Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T05:26:54.038Z Has data issue: false hasContentIssue false

Transcendental Nature of Special Values of L-Functions

Published online by Cambridge University Press:  20 November 2018

Sanoli Gun
Affiliation:
The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India email: sanoli@imsc.res.in
M. Ram Murty
Affiliation:
Department of Mathematics, Queen's University, Kingston, ON K7L 3N6 email: murty@mast.queensu.ca
Purusottam Rath
Affiliation:
Chennai Mathematical Institute, Padur PO, Siruseri 603103, Tamilnadu, India email: rath@cmi.ac.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we study the non-vanishing and transcendence of special values of a varying class of $L$-functions and their derivatives. This allows us to investigate the transcendence of Petersson norms of certain weight one modular forms.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Adhikari, S. D., Saradha, N., Shorey, T. N., and Tijdeman, R., Transcendental infinite sums. Indag Math. 12 (2001), no. 1, 1-14. doi:10.1016/S0019-3577(01)80001-XGoogle Scholar
[2] Akbary, A., Non-vanishing of weight k modular L-functions with large level. J. Ramanujan Math. Soc. 14 (1999), no. 1, 37-54.Google Scholar
[3] Breuil, C., Conrad, B., Diamond, F., and Taylor, R., On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843-939. doi:10.1090/S0894-0347-01-00370-8Google Scholar
[4] Conrad, B., Diamond, F., and Taylor, R., Modularity of certain potentially Barsotti-Tate Galois representations. J. Amer. Math. Soc. 12 (1999), no. 2, 521-567. doi:10.1090/S0894-0347-99-00287-8Google Scholar
[5] Deligne, P., and Serre, J.- P., Formes modulaires de poids 1. Ann. Sci. École Norm. Sup. (4) 7 (1974), 507-530 (1975).Google Scholar
[6] Diamond, F., On deformation rings and Hecke rings. Ann. of Math. (2) 144 (1996), no. 1, 137-166. doi:10.2307/2118586Google Scholar
[7] Gun, S., Ram Murty, M., and Rath, P., Transcendence of the log gamma function and some discrete periods. J. Number Theory 129 (2009), no. 9, 2154-2165. doi:10.1016/j.jnt.2009.01.008Google Scholar
[8] Gun, S., Ram Murty, M., and Rath, P., Linear independence of digamma function and a variant of a conjecture of Rohrlich. J. Number Theory 129 (2009), no. 8, 1858-1873. doi:10.1016/j.jnt.2009.02.007Google Scholar
[9] Lang, S., Introduction to modular forms. Grundlehren der mathematischenWissenschaften, 222, Springer-Verlag, Berlin-New York, 1976.Google Scholar
[10] Lang, S., Introduction to transcendental numbers. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1966.Google Scholar
[11] Lerch, M., Dalsi studie v oboru Malmstenovskych rad, Rozpravy Ceske Akad. 18 (1894), no. 3, 63pp.Google Scholar
[12] Ram Murty, M., An introduction to Artin L-functions. J. Ramanujan Math. Soc. 16 (2001), no. 3, 261-307.Google Scholar
[13] RamMurty, M. and, Saradha, N., Transcendental values of the digamma function. J. Number Theory 125 (2007), no. 2, 298-318. doi:10.1016/j.jnt.2006.09.017Google Scholar
[14] Stark, H. M., L-functions at s = 1. II. Artin L-functions with rational characters. Advances in Math. 17 (1975), no. 1, 60-92. doi:10.1016/0001-8708(75)90087-0Google Scholar
[15] Shimura, G., On the holomorphy of certain Dirichlet series. Proc. London Math. Soc. (3) 31 (1975), no. 1, 79-98. doi:10.1112/plms/s3-31.1.79Google Scholar
[16] Taylor, R. and, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553-572. doi:10.2307/2118560Google Scholar
[17] Tunnell, J., Artin's conjecture for representations of octahedral type. Bull. Amer. Math. Soc. (N. S.) 5 (1981), no. 2, 173-175. doi:10.1090/S0273-0979-1981-14936-3Google Scholar
[18] Washington, L. C., Introduction to cyclotomic fields. Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1982.Google Scholar
[19] Waldschmidt, M., Diophantine approximation on linear algebraic groups. Transcendence properties of the exponential function in several variables. Grundlehren der MathematischenWissenschaften, 326, Springer-Verlag, Berlin, 2000.Google Scholar
[20] Wiles, A., Modular elliptic curves and Fermat's last theorem. Ann. of Math. (2) 141 (1995), no. 3, 443-551. doi:10.2307/2118559Google Scholar
[21] Zagier, D., Values of zeta functions and their applications. In: First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., 120, Birkhäuser, Basel, 1994, pp. 497-512.Google Scholar