Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T04:28:11.606Z Has data issue: false hasContentIssue false

Transfer of Fourier Multipliers into Schur Multipliers and Sumsets in a Discrete Group

Published online by Cambridge University Press:  20 November 2018

Stefan Neuwirth
Affiliation:
Laboratoire de Mathématiques, Université de Franche-Comté, 25000 Besançon, France email: stefan.neuwirth@univ-fcomte.freric.ricard@univ-fcomte.fr
Éric Ricard
Affiliation:
Laboratoire de Mathématiques, Université de Franche-Comté, 25000 Besançon, France email: stefan.neuwirth@univ-fcomte.freric.ricard@univ-fcomte.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We inspect the relationship between relative Fourier multipliers on noncommutative Lebesgue–Orlicz spaces of a discrete group $\Gamma$ and relative Toeplitz-Schur multipliers on Schatten–von-Neumann–Orlicz classes. Four applications are given: lacunary sets, unconditional Schauder bases for the subspace of a Lebesgue space determined by a given spectrum $\Lambda \,\subseteq \,\Gamma$, the norm of the Hilbert transformand the Riesz projection on Schatten–von-Neumann classes with exponent a power of 2, and the norm of Toeplitz Schur multipliers on Schatten–von-Neumann classes with exponent less than 1.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Aleksandrov, A. B and Peller, V. V., Hankel and Toeplitz-Schur multipliers. Math. Ann. 324(2002), no. 2, 277–327. doi:10.1007/s00208-002-0339-zGoogle Scholar
[2] Bédos, E., On Følner nets, Szegő’s theorem and other eigenvalue distribution theorems. Exposition. Math. 15(1997), no. 3, 193–228, 384.Google Scholar
[3] Bourgain, J., Λp-sets in analysis: results, problems and related aspects. In: Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 195–232. pGoogle Scholar
[4] Bozejko, M., A new group algebra and lacunary sets in discrete noncommutative groups. Studia Math. 70(1981), no. 2, 165–175.Google Scholar
[5] Bozejko, M. and Fendler, G., Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group. Boll. Un. Mat. Ital. A (6) 3(1984), no. 2, 297–302.Google Scholar
[6] Brown, N.P. and Ozawa, N., C -algebras and finite-dimensional approximations. Graduate Studies in Mathematics, 88, American Mathematical Society, Providence, RI, 2008.Google Scholar
[7] Cannière, J.De. and Haagerup, U., Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Amer. J. Math. 107(1985), no. 2, 455–500. doi:10.2307/2374423Google Scholar
[8] Gamelin, T.W., Uniform algebras and Jensen measures. London Mathematical Society Lecture Note Series, 32, Cambridge University Press, Cambridge-New York, 1978.Google Scholar
[9] Gohberg, I. and Krupnik, N., One-dimensional linear singular integral equations. I. Operator Theory: Advances and Applications, 53, Birkhäuser Verlag, Basel, 1992.Google Scholar
[10] Gokhberg, I.Ts. and Krupnik, N. Ya., Norm of the Hilbert transformation in the L space. Russian, Funktsional. Anal. i Prilozhen. 2(1968), no. 2, 91–92; English translation in Funct. Anal. Appl. 2(1968), no. 2, 180–181. doi:10.1007/BF01075955Google Scholar
[11] Haagerup, U. and Kraus, J., Approximation properties for group C -algebras and group von Neumann algebras. Trans. Amer. Math. Soc. 344(1994), no. 2, 667–699. doi:10.2307/2154501Google Scholar
[12] Harcharras, A., Fourier analysis, Schur multipliers on Sp and non-commutative Λ(p)-sets. Studia Math. 137(1999), no. 3, 203–260.Google Scholar
[13] Hollenbeck, B., N. J. Kalton, and Verbitsky, I. E., Best constants for some operators associated with the Fourier and Hilbert transforms. Studia Math. 157(2003), no. 3, 237–278. doi:10.4064/sm157-3-2 pGoogle Scholar
[14] Hollenbeck, B. and Verbitsky, I. E., Best constants for the Riesz projection. J. Funct. Anal. 175(2000), no. 2, 370–392.Google Scholar
[15] Junge, M. and Ruan, Z.-J., Approximation properties for noncommutative L -spaces associated with discrete groups. Duke Math. J. 117(2003), no. 2, 313–341. doi:10.1215/S0012-7094-03-11724-X (T) spaces. Studia Math. 121(1996), no. 3, 231–247.Google Scholar
[16] Li, D., Complex unconditional metric approximation property for C Λ pGoogle Scholar
[17] Li, D. and Queffélec, H., Introduction à l’étude des espaces de Banach. Analyse et probabilités. Cours Spécialisés, 12, Société Mathématique de France, Paris, 2004.Google Scholar
[18] López, J.M. and Ross, K. A., Sidon sets. Lecture Notes Pure and Applied Mathematics, 13, Marcel Dekker Inc., New York, 1975.Google Scholar
[19] Marsalli, M. and West, G., Noncommutative H p spaces. J. Operator Theory 40(1998), no. 2, 339–355, 1998.Google Scholar
[20] Nazarov, F., Pisier, G., Treil, S., and Volberg, A., Sharp estimates in vector Carleson imbedding theorem and for vector paraproducts. J. Reine Angew. Math. 542(2002), 147–171. doi:10.1515/crll.2002.004Google Scholar
[21] Neuwirth, S., Multiplicateurs et analyse fonctionnelle. Ph.D. thesis, Université Paris 6, 1999. http://tel.archives-ouvertes.fr/tel-00010399Google Scholar
[22] Neuwirth, S., Cycles and 1-unconditional matrices. Proc. London Math. Soc. (3) 93(2006), no. 3, 761–790. doi:10.1017/S0024611506015899Google Scholar
[23] Oberlin, D.M., Translation-invariant operators on L p (G), 0 < p < 1. Michigan Math. J. 23(1976), no. 2, 119–122.Google Scholar
[24] Oikhberg, T., Restricted Schur multipliers and their applications. Proc. Amer. Math. Soc. 138(2010), no. 5, 1739–1750. doi:10.1090/S0002-9939-10-10203-2Google Scholar
[25] Olevskii, V., A connection between Fourier and Schur multipliers. Integral Equations Operator Theory 25(1996), no. 4, 496–500. doi:10.1007/BF01203030Google Scholar
[26] Orlicz, W., Linear functional analysis. Series in Real Analysis, 4. World Scientific Publishing Co., Inc., River Edge, NJ, 1992.Google Scholar
[27] Paulsen, V., Completely bounded maps and operator algebras. Cambridge Studies in Advanced Mathematics, 78, Cambridge University Press, Cambridge, 2002.Google Scholar
[28] Paulsen, V.I., Power, S. C., and Smith, Roger R., Schur products and matrix completions. J. Funct. Anal. 85(1989), 151–178. doi:10.1016/0022-1236(89)90050-5Google Scholar
[29] Peller, V.V., Hankel operators and their applications. Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.Google Scholar
[30] Pichorides, S.K.. On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Studia Math. 44(1972), 165–179 (errata insert). spaces and completely p-summing maps. Astérisque 247(1998), 131 pp.Google Scholar
[31] Pisier, G., Non-commutative vector valued L pGoogle Scholar
[32] Pisier, G., Similarity problems and completely bounded maps. Second, expanded ed., includes the solution to “The Halmos problem”, Lecture Notes in Mathematics, 1618, Springer-Verlag, Berlin, 2001.Google Scholar
[33] Randrianantoanina, N., Hilbert transform associated with finite maximal subdiagonal algebras. J. Austral. Math. Soc. Ser. A 65(1998), no. 3, 388–404.Google Scholar
[34] Ricard, É., L’espace H 1 n’a pas de base complètement inconditionnelle. C. R. Acad. Sci. Paris Sér. I Math. 331(2000), no. 8, 625–628. doi:10.1016/S0764-4442(00)01680-3Google Scholar
[35] Ricard, É., Décompositions de H 1 , multiplicateurs de Schur et espaces d’opérateurs. Ph.D. thesis, Université Paris 6, 2001. http://www.institut.math.jussieu.fr/theses/2001/ricardGoogle Scholar
[36] Rudin, W., Trigonometric series with gaps. J. Math. Mech. 9(1960), no. 2, 203–227.Google Scholar
[37] Varopoulos, N.Th., Tensor algebras over discrete spaces. J. Functional Analysis 3(1969), no. 2, 321–335. doi:10.1016/0022-1236(69)90046-9Google Scholar
[38] Zsid, L.ó, On spectral subspaces associated to locally compact abelian groups of operators. Adv. in Math. 36, no. 3, 213–276. doi:10.1016/0001-8708(80)90016-XGoogle Scholar