Published online by Cambridge University Press: 20 November 2018
We characterize the Local Langlands Correspondence $\left( \text{LLC} \right)$ for inner forms of $\text{G}{{\text{L}}_{n}}$ via the Jacquet–Langlands Correspondence $\left( \text{JLC} \right)$ and compatibility with the Langlands Classification. We show that $\text{LLC}$ satisfies a natural compatibility with parabolic induction and characterize $\text{LLC}$ for inner forms as a unique family of bijections $\prod \left( \text{G}{{\text{L}}_{r}}\left( D \right) \right)\,\to \,\Phi \left( \text{G}{{\text{L}}_{r}}\left( D \right) \right)$ for each $r$, (for a fixed $D$), satisfying certain properties. We construct a surjective map of Bernstein centers $\mathfrak{Z}\left( \text{G}{{\text{L}}_{n}}\left( F \right) \right)\,\to \,\mathfrak{Z}\left( \text{G}{{\text{L}}_{r}}\left( D \right) \right)$ and show this produces pairs of matching distributions in the sense of Haines. Finally, we construct explicit Iwahori-biinvariant matching functions for unit elements in the parahoric Hecke algebras of $\text{G}{{\text{L}}_{r}}\left( D \right)$, and thereby produce many explicit pairs of matching functions.