Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T05:36:01.010Z Has data issue: false hasContentIssue false

Twisted Hasse-Weil L-Functions and the Rank of Mordell-Weil Groups

Published online by Cambridge University Press:  20 November 2018

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Following a method outlined by Greenberg, root number computations give a conjectural lower bound for the ranks of certain Mordell–Weil groups of elliptic curves. More specifically, for PQn a PGL2(Z/pnZ)–extension of Q and E an elliptic curve over Q, define the motive Eρ, where ρ is any irreducible representation of Gal(PQn /Q). Under some restrictions, the root number in the conjectural functional equation for the L-function of Eρ is easily computable, and a ‘–1’ implies, by the Birch and Swinnerton–Dyer conjecture, that ρ is found in E(PQn) ⊗ C. Summing the dimensions of such ρ gives a conjectural lower bound of

p2n–p2n–1–p–1

for the rank of E(PQn).

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

1. Deligne, P., Les constantes des équations fonctionelles des fonctions L. Modular Functions of One Variable. II, Lecture Notes in Math. 349(1973), 501595.Google Scholar
2. Deligne, P., Valeurs de fonctions L et périodes d’intégrales. Proc. Sympos. Pure Math. (2) XXXIII(1979), 313346.Google Scholar
3. Greenberg, R., Non-vanishing of certain values of L-functions. Analytic Number Theory andDiophantine Problems, Prog. in Math. 70(1987), 223235.Google Scholar
4. Harris, M., Systematic growth of Mordell-Weil groups of abelian varieties in towers of number fields. Invent. Math. 51(1979), 123141.Google Scholar
5. Rohrlich, D., The vanishing of certain Rankin-Selberg convolutions, Automorphic Forms and Analytic Number Theory, Publications CRM, Montreal, 1990. 123133.Google Scholar
6. Serre, J.-P., Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures). Séminaire Delange-Pisot-Poitou, 1969/70, 19.Google Scholar
7. Serre, J.-P., Local Fields, Springer-Verlag, New York, 1979.Google Scholar
8. Serre, J.-P., Propriétés des points d’ordre fini des courbes elliptiques. Invent. Math. 15(1972), 259331.Google Scholar
9. Silberger, A., PGL2 over the p-adics. Lecture Notes in Math. 166(1970).Google Scholar
10. Tate, J., Number Theoretic Background, Proc. Sympos. Pure Math. (2) XXXIII(1979), 326.Google Scholar
11. AndréWeil, Dirichlet Series and Automorphic Functions. Lecture Notes in Math. 189(1971).Google Scholar