Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T02:02:34.097Z Has data issue: false hasContentIssue false

Une propriété de domination convexe pour les orbites sturmiennes

Published online by Cambridge University Press:  20 November 2018

Thierry Bousch*
Affiliation:
Laboratoire de Mathématique (UMR 8628 du CNRS), bât. 425/430, Université de Paris-Sud, 91405 Orsay Cedex, France courriel: Thierry.Bousch@math.u-psud.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\mathbf{x}\,=\,\left( {{x}_{0}},\,{{x}_{1}},.\,.\,. \right)$ be a $N$-periodic sequence of integers $\left( N\,\ge \,1 \right)$, and $\mathbf{s}$ a sturmian sequence with the same barycenter (and also $N$-periodic, consequently). It is shown that, for affine functions $\alpha :\,\mathbb{R}_{(N)}^{\mathbb{N}}\,\to \,\mathbb{R}$ which are increasing relatively to some order ${{\le }_{2}}$ on $\mathbb{R}_{(N)}^{\mathbb{R}}$ (the space of all $N$-periodic sequences), the average of $\left| \alpha \right|$ on the orbit of $\mathbf{x}$ is greater than its average on the orbit of $\mathbf{s}$.

Résumé

Résumé

Soit $\mathbf{x}\,=\,\left( {{x}_{0}},\,{{x}_{1}},.\,.\,. \right)$ une suite $N$-périodique d'entiers $\left( N\,\ge \,1 \right)$, et $\mathbf{s}$ une suite sturmienne de même barycentre (et donc également $N$-périodique). On montre que, pour les fonctions affines $\alpha :\,\mathbb{R}_{(N)}^{\mathbb{N}}\,\to \,\mathbb{R}$ qui sont croissantes relativement à un certain ordre ${{\le }_{2}}$ sur $\mathbb{R}_{(N)}^{\mathbb{R}}$ (l'espace de toutes les suites $N$-périodiques), la moyenne de $\left| \alpha \right|$ sur l'orbite de $\mathbf{x}$ est plus grande que sa moyenne sur l'orbite de $\mathbf{s}$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

Références

[BM] Bousch, T. et Mairesse, J., Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. J. Amer. Math. Soc. 15(2002), 77111.http://dx.doi.org/10.1090/S0894-0347-01-00378-2 Google Scholar
[Haj] Hajek, B., Extremal splittings of point processes. Math. Oper. Res. 10(1985), 543556.http://dx.doi.org/10.1287/moor.10.4.543 Google Scholar
[HLP] Hardy, G. H., Littlewood, J. E., et Pólya, G., Some simple inequalities satisfied by convex functions. Messenger Math. 58(1929), 145152.Google Scholar
[Hub] Hubbard, J., Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane (TCNQ) salts. Phys. Rev. B 17(1978), 494505.Google Scholar
[Jen] Jenkinson, O., A partial order on ✗2-invariant measures. Math. Res. Letters 15(2008), 893900.http://dx.doi.org/10.4310/MRL.2008.v15.n5.a6 Google Scholar
[JZ] Jenkinson, O. et Zamboni, L. Q., Characterisations of balanced words via orderings, Theoretical Computer Science 310(2004), 247271.http://dx.doi.org/10.1016/S0304-3975(03)00397-9 Google Scholar
[MH] Morse, M. et Hedlund, G. A., Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62(1940), 142. http://dx.doi.org/10.2307/2371431 Google Scholar
[Mir] Mirsky, L., Results and problems in the theory of doubly-stochastic matrices. Z.Wahrscheinlichkeitstheorie und Verw. Gebiete 1(1963), 319334.http://dx.doi.org/10.1007/BF00533407 Google Scholar
[Mui] Muirhead, R. F., Some methods applicable to identities and inequalities of symmetric algebraicfunctions of n letters. Proc. Edinburgh Math. Soc. 21(1903), 144157.Google Scholar
[PU] Pokrovsky, V. L. et Uimin, G. V., On the properties of monolayers of adsorbed atoms. J. Phys. C 11(1978), 35353549.Google Scholar