Article contents
A Variant of the Problem of the Thirteen Spheres
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We use the term balls for congruent, closed spheres no two of which have interior points in common. In Euclidean n-space let Nn be the maximal number of balls which can touch a ball. Obviously, N2 = 6. R. Hoppe (see (1)) proved that N3 = 12, settling thereby a famous point of controversy between Newton and David Gregory, known as the problem of the thirteen spheres (see (3)). Simpler proofs were given by Günter (6), Schütte and van der Waerden (10), and Leech (7).
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1967
References
1.
Bender, C., Bestimmung der grössten Anzahl gleich grosser Kugeln, welche sick auf eine Kugel von demselben Radius, wie die übrigen, auflegen lassen, Arch. Math. Phys.,
56 (1874), 302–312.Google Scholar
2.
Böröczky, K. and Florian, A., Über die dichteste Kugelpackung im hyperbolischen Raum, Acta Math. Acad. Sci. Hungar.,
15 (1964), 237–245.Google Scholar
3.
Coxeter, H. S. M., An upper bound for the number of equal nonoverlapping spheres that can touch another of the same size,
Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc.
VII, Convexity (1963), 53–71.Google Scholar
4.
Fejes Tóth, L., Über die Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfläche liegenden Punktsystems, Jber. Deutsch. Math. Verein.
53 (1943), 66–68.Google Scholar
5.
Fejes Tóth, L., On the total area of the faces of a four-dimensional polytope, Can. J. Math.,
17 (1965), 93–99.Google Scholar
8.
Minkowski, H., Diskontinuitätsbereich für arithmetische Äquivalenz, J. Reine Angew. Math.
129 (1905), 220–274.Google Scholar
9.
Robinson, R. M., Arrangement of 24 points on a sphere, Math. Ann.,
144 (1961), 17–48.Google Scholar
10.
Schütte, K. and van der Waerden, B. L., Das Problem der dreizehn Kugeln,
Math. Ann.
125 (1953), 325–334.Google Scholar
You have
Access
- 4
- Cited by