Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T08:11:18.388Z Has data issue: false hasContentIssue false

Variation of constants formula and exponential dichotomy for nonautonomous non-densely defined Cauchy problems

Published online by Cambridge University Press:  29 June 2020

Pierre Magal*
Affiliation:
Université de Bordeaux, IMB, UMR 5251, F-33076Bordeaux, France and CNRS, IMB, UMR 5251, F-33400Talence, France
Ousmane Seydi
Affiliation:
Département Tronc Commun, Ecole Polytechnique de Thiès, Thiès21001, Sénégal e-mail: oseydi@ept.sn

Abstract

In this paper, we extend to the non-Hille–Yosida case a variation of constants formula for a nonautonomous and nonhomogeneous Cauchy problems first obtained by Gühring and Räbiger. By using this variation of constants formula, we derive a necessary and sufficient condition for the existence of an exponential dichotomy for the evolution family generated by the associated nonautonomous homogeneous problem. We also prove a persistence result of the exponential dichotomy for small perturbations. Finally, we illustrate our results by considering two examples. The first example is a parabolic equation with nonlocal and nonautonomous boundary conditions, and the second example is an age-structured model that is a hyperbolic equation.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arendt, W., Resolvent positive operators. Proc. Lond. Math. Soc. 54(1987), 321349. http://dx.doi.org/10.1112/plms/s3-54.2.321 CrossRefGoogle Scholar
Arendt, W., Vector valued Laplace transforms and Cauchy problems. Israel J. Math. 59(1987), 327352. http://dx.doi.org/10.1007/BF02774144 CrossRefGoogle Scholar
Baskakov, A. G., Semigroups of difference operators in spectral analysis of linear differential operators. Funct. Anal. Appl. 30(1996), 149157. http://dx.doi.org/10.1007/BF02509501 CrossRefGoogle Scholar
Boulite, S., Maniar, L., and Moussi, M., Non-autonomous retarded differential equations: variation of constants formulas and asymptotic behaviour . Elect. J. Differ. Equat. (2003), no. 62, 115.Google Scholar
Boulite, S., Maniar, L., and Moussi, M.,Wellposedness and asymptotic behaviour of non-autonomous boundary Cauchy problems. Forum Math. 18(2006), 611638. http://dx.doi.org/10.1015/FORUM.2006.032 CrossRefGoogle Scholar
Ducrot, A., Magal, P., and Prevost, K., Integrated semigroups and parabolic equations. Part I: linear perturbation of almost sectorial operators. J. Evol. Equat. 10(2010), 263291. http://dx.doi.org/10.1007/s00028-009-0049-z CrossRefGoogle Scholar
Ducrot, A., Magal, P., and Seydi, O., A finite-time condition for exponential trichotomy in infinite dynamical systems. Canad. J. Math. 67(2015), 10651090. http://dx.doi.org/10.4153/CJM-2014-023-3 CrossRefGoogle Scholar
Ducrot, A., Magal, P., and Seydi, O., Persistence of exponential trichotomy for linear operators: A Lyapunov-Perron approach. J. Dyn. Differ. Equat. 28(2016), 93126. http://dx.doi.org/10.1007/s10884-015-9493-3 CrossRefGoogle Scholar
Ducrot, A., Liu, Z., and Magal, P., Projectors on the generalized eigenspaces for neutral functional differential equations in L spaces. Canad. J. Math. 62(2010), 7493. http://dx.doi.org/10.4153/CJM-2010-005-2 CrossRefGoogle Scholar
Engel, K.-J. and Nagel, R., One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.Google Scholar
Gühring, G. and Räbiger, F., Asymptotic properties of mild solutions of nonautonomous evolution equations with applications to retarded differential equations . Abstr. App. Anal. 4(1999), 169194. http://dx.doi.org/10.1155/S1085337599000214 CrossRefGoogle Scholar
Hale, J. K. and Lin, X. B., Heteroclinic orbits for retarded functional differential equations . J. Differ. Equat. 65(1986), 175202. http://dx.doi.org/10.1016/0022-0396(86)90032-X CrossRefGoogle Scholar
Henry, D., Geometric theory of semilinear parabolic equations . Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.Google Scholar
Kellermann, H. and Hieber, M., Integrated semigroups . J. Funct. Anal. 84(1989), 160180. http://dx.doi.org/10.1016/0022-1236(89)90116-X CrossRefGoogle Scholar
Latushkin, Y., Randolph, T., and Schnaubelt, R., Exponential dichotomy and mild solutions of nonautonomous equations in Banach spaces . J. Dyn. Differ. Equat. 10(1998), 489510. http://dx.doi.org/10.1023/A:1022609414870 CrossRefGoogle Scholar
Levitan, B. M. and Zhikov, V. V., Almost periodic functions and differential equations. Translated from the Russian by Longdon, L. W., Cambridge University Press, Cambridge-New York, 1982.Google Scholar
Lian, Z. and Lu, K., Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space . Mem. Amer. Math. Soc. 206(2010), no. 967. http://dx.doi.org/10.1090/S0065-9266-10-00574-0 Google Scholar
Magal, P. and Ruan, S., On integrated semigroups and age structured models in L ${}^p$ spaces. Differ. Integral Equat. 20(2007), 197239.Google Scholar
Magal, P. and Ruan, S., On semilinear Cauchy problems with non-dense domain . Adv. Differ. Equat. 14(2009), 10411084.Google Scholar
Magal, P. and Ruan, S., Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models . Mem. Amer. Math. Soc. 202(2009), no. 951. http://dx.doi.org/10.1090/S0065-9266-09-00568-7 Google Scholar
Schnaubelt, R., Sufficient conditions for exponential stability and dichotomy of evolution equations . Forum Math. 11(1999), no. 5, 543566. http://dx.doi.org/10.1515/form.1999.013 CrossRefGoogle Scholar
Thieme, H. R., Integrated semigroups and integrated solutions to abstract Cauchy problems . J. Math. Anal. App. 152(1990), 416447. http://dx.doi.org/10.1016/0022-247X(90)90074-P CrossRefGoogle Scholar
Thieme, H. R., Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomogeneous Cauchy problem. J. Evol. Equat. 8(2008), 283305. http://dx.doi.org/10.1007/s00028-007-0355-2CrossRefGoogle Scholar