Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T07:53:54.396Z Has data issue: false hasContentIssue false

Weakly Regular Algebras, Boolean Orthogonalities and Direct Products of Integral Domains

Published online by Cambridge University Press:  20 November 2018

William H. Cornish
Affiliation:
The Flinders University of South Australia, Bedford Park 5042, S.A., Australia
Patrick N. Stewart
Affiliation:
Dalhousie University, Halifax, N.S., Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider representations of weakly regular algebras with permutable congruences and a Boolean orthogonality as direct products of orthoprime algebras. Our theorems generalize results of Abian [2; 3] and Speed [24] which characterize direct products of integral domains, and results of Abian [1] and Chacron [7] which characterize direct products of division rings.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1976

References

1. Abian, A., Direct product decomposition of commutative semi-simple rings, Proc. Amer. Math. Soc. H (1970), 502507.Google Scholar
2. Abian, A., Decomposition of commutative semi-simple rings into direct product of integral domains, Arch. Math. 24 (1973), 387392.Google Scholar
3. Abian, A., Direct product decomposition of alternative rings without nilpotent elements, preprint.Google Scholar
4. Abian, A., Order in a special class of rings and a structure theorem, to appear, Proc. Amer. Math. Soc.Google Scholar
5. Blackett, D. W., Simple and semisimple near-rings, Proc. Amer. Math. Soc. 4 (1953), 772785.Google Scholar
6. Blyth, T. S., Loipomorphisms, J. London Math. Soc. 2 (1970), 635642.Google Scholar
7. Chacron, M., Direct product of division rings and a paper of Abian, Proc. Amer. Math. Soc. 29 (1971), 259262.Google Scholar
8. Cornish, W. H., Subdirect decompositions of semilattice-ordered semigroups, Math. Japonicae 18 (1973), 203209.Google Scholar
9. Cornish, W. H., The Chinese remainder theorem and sheaf representations of universal algebras, preprint.Google Scholar
10. Cornish, W. H., B∞lean orthogonalities and minimal prime ideals, preprint.Google Scholar
11. Cornish, W. H. and Stewart, P. N., Direct and subdirect decompositions of universal algebras with a B∞lean orthogonality, preprint.Google Scholar
12. Csâkâny, B., Characterizations of regular varieties, Acta. Sci. Math. (Szeged) 31 (1970), 187189.Google Scholar
13. Fichtner, K., Varieties of universal algebras with ideals, Mat. Sb. (N.S.) 75 (117) (1968), 445-453. English translation: Math. USSR Sb. 4 (1968), 411418.Google Scholar
14. Frôhlich, A., Distributively generated near-rings, I. Ideal theory, Proc. London Math. Soc. 8 (1958), 7694.Google Scholar
15. Hentzel, I. R., Alternative rings without nilpotent elements, Proc. Amer. Math. Soc. (1974), 373376.Google Scholar
16. Janowitz, M. F., On the natural ordering of a semisimple ring, preprint.Google Scholar
17. Kurosh, A. G., Lectures in general algebra (Pergamon Press, Oxford-Edinburgh-New York, 1965).Google Scholar
18. Ligh, S., On division near-rings, Can. J. Math. 21 (1969), 13661371.Google Scholar
19. McCarthy, P. J., Homomorphisms of certain commutative lattice-ordered semigroups, Acta Sci. Math. (Szeged) 27 (1966), 6365.Google Scholar
20. Myung, H. C. and Jimenez, L. R., Direct product decomposition of alternative rings, Proc. Amer. Math. Soc. 47 (1975), 5360.Google Scholar
21. Rjabuhin, Ju. M., Algebras without nilpotent elements. I, Algebra i Logika 8 (1969), 181-214. English translation: Algebra and Logic 8 (1969), 103122.Google Scholar
22. Rjabuhin, Ju. M., Algebras without nilpotent elements. II, Algebra i Logika 8 (1969), 215-240. English translation: Algebra and Logic 8 (1969), 123137.Google Scholar
23. Schmidt, E. T., Ûber reguldre Mannigfaltigkeiten, Acta Sci. Math. (Szeged) 81 (1970), 197201.Google Scholar
24. Speed, T. P., A note on commutative Baer rings, J. Austral. Math. Soc. 14 (1972), 257263.Google Scholar
25. Sussman, I., A generalization of B∞lean rings, Math. Ann. 136 (1958), 326338.Google Scholar