Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T22:15:53.705Z Has data issue: false hasContentIssue false

Weighted Carleson Measure Spaces Associated with Different Homogeneities

Published online by Cambridge University Press:  24 December 2018

Xinfeng Wu*
Affiliation:
Department of Mathematics, China University of Mining ℘ Technology (Beijing), Beijing 100083, China. e-mail: wuxf@cumtb.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we introduce weighted Carleson measure spaces associated with different homogeneities and prove that these spaces are the dual spaces of weighted Hardy spaces studied in a forthcoming paper. As an application, we establish the boundedness of composition of two Calderón–Zygmund operators with different homogeneities on the weighted Carleson measure spaces; this, in particular, provides the weighted endpoint estimates for the operators studied by Phong–Stein.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[CF1] Chang, S.-Y. A. and Fefferman, R., A continuous verion of duality of H1with BMO on the bi-disc. Ann. of Math. 112(1980), no. 1, 179201.http://dx.doi.org/10.2307/1971324 Google Scholar
[CF2] Chang, S.-Y. A. and Fefferman, R., Some recent developments in Fourier analysis and Hp-theory on product domains. Bull. Amer. Math. Soc. (N.S.) 12(1985), no. 1, 143.http://dx.doi.org/10.1090/S0273-0979-1985-15291-7 Google Scholar
[DHLW] Ding, Y., Han, Y., Lu, G., and Wu, X., Boundedness of singular integrals on multiparameter weighted Hardy spaces Hp w(Rn✗ Rm). Potential Anal. 37(2012), no. 1, 3156. http://dx.doi.org/10.1007/s11118-011-9244-y Google Scholar
[FS1] Fefferman, R. and Stein, E. M., Singular integrals on product spaces. Adv. in Math. 45(1982),no. 2, 117143.http://dx.doi.org/10.1016/S0001-8708(82)80001-7 Google Scholar
[FL] Ferguson, S. and Lacey, M. T., A characterization of product BMO by commutators. Acta Math. 189(2002), no. 2, 143160.http://dx.doi.org/10.1007/BF02392840 Google Scholar
[FS2] Folland, G. B. and Stein, E. M., Hardy spaces on homogeneous groups. Mathematical Notes, 28, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982.Google Scholar
[FJ] Frazier, M. and Jawerth, B., A discrete transform and decompositions of distribution spaces. J. Func. Anal. 93(1990), no. 1, 34170.http://dx.doi.org/10.1016/0022-1236(90)90137-A Google Scholar
[FJW] Frazier, M., Jawerth, B., and Weiss, G., Littlewood-Paley theory and the study of function spaces. CBMS Regional Conference Series in Mathematics, 79, American Mathematical Society, Providence, RI, 1991.Google Scholar
[Ga] Garcia-Cuerva, J., Weighted Hardy spaces. In: Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll.,Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., 35, American Mathematical Society, Providence, RI, 1979, pp. 253261.Google Scholar
[GR] Garcia-Cuerva, J. and Rubio de Francia, J., Weighted norm inequalities and related topics. North-Holland Mathematics Studies, 116, Mathematical Notes, 104, North-Holland, Amsterdam, 1985.Google Scholar
[Ha] Han, Y., Discrete Calderön-type reproducing formula. Acta Math. Sin. (Engl. Ser.) 16(2000), no. 2, 277294.http://dx.doi.org/10.1007/s101140000037 Google Scholar
[HLLRS] Han, Y., Lin, C.-C., Lu, G., Ruan, Z., and Sawyer, E., Hardy spaces associated with different homogeneities and boundedness of composition operators. Rev. Mat. Iberoamericana, to appear.Google Scholar
[Jo] Journé, J.-L., Calderón-Zygmund operators on product spaces. Rev. Mat. Iberomaricana 1(1985), no. 3, 5591.http://dx.doi.org/10.4171/RMI/15 Google Scholar
[Kr] Krug, D., A weighted version of the atomic decomposition for Hp (bi-half space). Indiana Univ. Math. J. 37(1988), no. 2, 277300.http://dx.doi.org/10.1512/iumj.1988.37.37014 Google Scholar
[KT] Krug, D. and Torchinsky, A. , A weighted version of Journé's Lemma. Rev. Mat. Iberoamericana 10(1994), no. 2, 363378.http://dx.doi.org/10.4171/RMI/155 Google Scholar
[LPPW] Lacey, M., Petermichl, S., Pipher, J., and Wick, B., Multiparameter Riesz commutators. Amer. J. Math. 131(2009), no. 3, 731769.http://dx.doi.org/10.1353/ajm.0.0059 Google Scholar
[LLL] Lee, M.-Y., Lin, C.-C., and Lin, Y.-C., A wavelet characterization for the dual of weighted Hardyspaces. Proc. Amer. Math. Soc. 137(2009), no. 12, 42194225.http://dx.doi.org/10.1090/S0002-9939-09-10044-8 Google Scholar
[MR] Madych, W. and Rivière, N., Multipliers of the Hölder classes. J. Functional Analysis 21(1976), no. 4, 369379.http://dx.doi.org/10.1016/0022-1236(76)90032-X Google Scholar
[PS] Phong, D. H. and Stein, E. M. , Some further classes of pseudodifferential and singular-integral operators arising in boundary value problems. I. Composition of operators. Amer. J. Math. 104(1982), no. 1, 141172.http://dx.doi.org/10.2307/2374071 Google Scholar
[St] Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III, Princeton University Press. Princeton, NJ, 1993.Google Scholar
[ST] Strömberg, J.-O. and Torchinsky, A., Weighted Hardy spaces. Lecture Notes in Mathematics, 1381, Springer-Verlag, Berlin, 1989.Google Scholar
[WW] Wainger, S. and Weiss, G., Harmonic analysis in Euclidean spaces. I. Proceedings of Symp. in Pure Math., 35, American Mathematical Society, Providence, RI, 1979.Google Scholar
[Wu] Wu, X., Weighted norm inequalities for composition of operators associated with different homogeneities. Submitted,http://lxy.cumtb.edu.cn/1.pdf.Google Scholar