Hostname: page-component-6bb9c88b65-vmslq Total loading time: 0 Render date: 2025-07-22T23:17:38.068Z Has data issue: false hasContentIssue false

Allelic Diversity, De Novo CAG Expansions and Intergenerational Instability at the HTT Locus in a Sample from India

Published online by Cambridge University Press:  26 May 2025

Nikhil Ratna*
Affiliation:
Molecular Genetics laboratory and Genetic Counseling and Testing Clinic (GCAT), Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
Sowmya Devatha Venkatesh
Affiliation:
Molecular Genetics laboratory and Genetic Counseling and Testing Clinic (GCAT), Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
Swathi Pasupulati
Affiliation:
Molecular Genetics laboratory and Genetic Counseling and Testing Clinic (GCAT), Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
Geetanjali Murari
Affiliation:
Molecular Genetics laboratory and Genetic Counseling and Testing Clinic (GCAT), Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
Nitish Kamble
Affiliation:
Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
Biju Viswanath
Affiliation:
Molecular Genetics laboratory and Genetic Counseling and Testing Clinic (GCAT), Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
Ravi Yadav
Affiliation:
Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
Mathew Varghese
Affiliation:
Molecular Genetics laboratory and Genetic Counseling and Testing Clinic (GCAT), Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
Pramod Kumar Pal
Affiliation:
Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
Sanjeev Jain
Affiliation:
Molecular Genetics laboratory and Genetic Counseling and Testing Clinic (GCAT), Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
Meera Purushottam
Affiliation:
Molecular Genetics laboratory and Genetic Counseling and Testing Clinic (GCAT), Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
*
Corresponding author: Nikhil Ratna; Email: mybrainjourney@gmail.com

Abstract

Background:

Huntington’s disease (HD) is an inherited, neurodegenerative disorder caused by the expansion of an unstable CAG repeat sequence in the Huntingtin (HTT) gene. The prevalence of HD, allelic diversity, rate of novel expansions and the clinical correlates vary across populations.

Objective:

We analyzed the diversity of alleles and their clinical correlates and examined the inheritance patterns and the pattern of instability of CAG repeats in a few families.

Methods:

Clinical history and pedigree structure were collected from records or through interviews between 2016 and 2019. Genetic testing at the HD locus was done on clinical suspicion, or relatedness, after counseling. Descriptive statistics and correlation analysis were used.

Results:

Expanded repeats were detected in 239 individuals, including 232 who were symptomatic and 7 presymptomatic relatives. The number of CAG repeats (mean = 45.6) and age at onset (mean = 39.2 years) showed a strong inverse correlation (r = -0.67). We found atypical alleles such as 8 intermediate alleles (IA), 12 reduced penetrance alleles and 14 large (>60) expansion alleles corresponding to juvenile HD. Three individuals carried biallelic expansions. Paternal inheritance was more common, and the mean increase in repeats in the available parent-child pairs was 14. Thirty-seven individuals had no family history of HD, with de novo expansion confirmed in three cases.

Conclusions:

Novel mutations at the HTT locus may not be rare in India. A lack of family history should not exclude appropriate testing. The prevalence of IA and incidence of de novo expansions suggest that there may be a reservoir of alleles prone to expansion.

Résumé

RÉSUMÉ

Diversité allélique, expansions de novo de type CAG et instabilité intergénérationnelle du locus HTT dans un échantillon de l’Inde.

Contexte :

La maladie de Huntington (MH) est une maladie neurodégénérative héréditaire causée par l’expansion d’une séquence répétitive instable de type CAG dans le gène HTT. La prévalence de la MH, la diversité allélique, le taux de nouvelles expansions et les corrélats cliniques varient d’une population à l’autre.

Objectif :

Nous avons analysé la diversité des allèles et leurs corrélats cliniques et examiné les schémas de transmission et d’instabilité des répétitions de type CAG au sein de quelques familles.

Méthodes :

Leurs antécédents cliniques et la structure de leur arbre généalogique ont été recueillis à partir de dossiers ou au moyen d’entretiens menés entre 2016 et 2019. Les tests génétiques au locus HD ont été effectués sur la base d’une suspicion clinique ou d’un lien de parenté après conseil. Des statistiques descriptives et des analyses de corrélation ont également été utilisées.

Résultats :

Des répétitions étendues ont été détectées chez 239 personnes, dont 232 étaient symptomatiques et 7 concernaient des parents présymptomatiques. Le nombre de répétitions de type CAG (moyenne = 45,6) et l’âge d’apparition de la maladie (moyenne = 39,2 ans) ont montré une forte corrélation inverse (r = 0,67). Nous avons trouvé des allèles atypiques tels que 8 allèles intermédiaires (AI), 12 allèles à faible pénétrance (AFP) et 14 allèles d’expansion de grande taille (> 60) correspondant à une forme juvénile de la MH. Trois individus étaient porteurs d’expansions bi-alléliques. L’hérédité paternelle était plus fréquente et l’augmentation moyenne des répétitions dans les paires parent-enfant disponibles était de 14. À noter que 37 individus n’avaient pas d’antécédents familiaux de MH, une expansion de novo ayant été confirmée dans trois cas.

Conclusion :

Les nouvelles mutations du locus HTT ne sont peut-être pas rares en Inde. De plus, l’absence d’antécédents familiaux ne doit pas exclure un dépistage approprié. La prévalence des allèles intermédiaires et l’incidence des expansions de novo suggèrent qu’il pourrait y avoir un réservoir d’allèles susceptibles d’expansion.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Macdonald, M, Ambrose, CM, Duyao, MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971983. doi: 10.1016/0092-8674(93)90585-E.CrossRefGoogle Scholar
Bean, L, Bayrak-Toydemir, P. American College of Medical Genetics and Genomics Standards and Guidelines for clinical genetics laboratories, 2014 edition: technical standards and guidelines for Huntington disease. Genet Med. 2014;16:17. doi: 10.1038/gim.2014.146.CrossRefGoogle ScholarPubMed
Andrew, SE, Paul Goldberg, Y, Kremer, B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet. 1993;4:398403. doi: 10.1038/ng0893-398.CrossRefGoogle ScholarPubMed
Wexler, NS, Lorimer, J, Porter, J et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci. 2004;101:34983503. doi: 10.1073/pnas.0308679101.Google ScholarPubMed
Warby, SC, Montpetit, A, Hayden, AR, et al. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am J Hum Genet. 2009;84:351366. doi: 10.1016/j.ajhg.2009.02.003.CrossRefGoogle ScholarPubMed
Semaka, A, Kay, C, Doty, CN, et al. High frequency of intermediate alleles on Huntington disease-associated haplotypes in British Columbia’s general population. Am J Med Genet B Neuropsychiatr Genet. 2013;162:864871. doi: 10.1002/ajmg.b.32193.CrossRefGoogle Scholar
Kay, C, Collins, JA, Wright, GEB, et al. The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population. Am J Med Genet B Neuropsychiatr Genet. 2018;177:346357. doi: 10.1002/ajmg.b.32618.CrossRefGoogle ScholarPubMed
Goldberg, YP, Kremer, B, Andrew, SE, et al. Molecular analysis of new mutations for Huntington’s disease: intermediate alleles and sex of origin effects. Nat Genet. 1993;5:174179. doi: 10.1038/ng1093-174.CrossRefGoogle ScholarPubMed
Ruiz De Sabando, A, Urrutia Lafuente, E, Galbete, A, et al. Spanish HTT gene study reveals haplotype and allelic diversity with possible implications for germline expansion dynamics in Huntington disease. Hum Mol Genet. 2023;32:897906. doi: 10.1093/hmg/ddac224.CrossRefGoogle ScholarPubMed
Myers, RH, MacDonald, ME, Koroshetz, WJ, et al. De novo expansion of a (CAG)n repeat in sporadic Huntington’s disease. Nat Genet. 1993;5:168173. doi: 10.1038/ng1093-168.CrossRefGoogle ScholarPubMed
McNeil, SM, Novelletto, A, Srinidhi, J, et al. Reduced penetrance of the Huntington’s disease mutation. Hum Mol Genet. 1997;6:775779. doi: 10.1093/hmg/6.5.775.CrossRefGoogle ScholarPubMed
Chheda, P, Chanekar, M, Salunkhe, Y, et al. A study of triplet-primed PCR for identification of CAG repeat expansion in the HTT gene in a cohort of 503 Indian cases with Huntington’s disease symptoms. Mol Diagn Ther. 2018;22:353359. doi: 10.1007/s40291-018-0327-y.CrossRefGoogle Scholar
Hussain, Z, Mukherjee, A, Ganguly, G, et al. Clinical profile of genetically proven huntington’s disease patients from Eastern India. Ann Indian Acad Neurol. 2020;23:195. doi: 10.4103/aian.AIAN_505_19.Google ScholarPubMed
Moily, NS, Kota, LN, Anjanappa, RM, et al. Trinucleotide repeats and haplotypes at the Huntingtin locus in an Indian sample overlaps with European haplogroup A. PLoS Currents. 2014;6:ecurrent-hd. doi: 10.1371/currents.hd.a3ad1a381ab1eed117675145318c9a80.Google Scholar
Li, H-L, Li, X-Y, Dong, Y, et al. Clinical and genetic profiles in Chinese patients with Huntington’s disease: a ten-year multicenter study in China. Aging Dis. 2019;10:1003. doi: 10.14336/AD.2018.0911.CrossRefGoogle ScholarPubMed
Cubo, E, Ramos-Arroyo, MA, Martinez-Horta, S, et al. Clinical manifestations of intermediate allele carriers in Huntington disease. Neurology. 2016;87:571578. doi: 10.1212/WNL.0000000000002944.CrossRefGoogle ScholarPubMed
Ha, AD, Jankovic, J. Exploring the correlates of intermediate CAG repeats in Huntington disease. Postgrad Med. 2011;123:116121. doi: 10.3810/pgm.2011.09.2466.CrossRefGoogle ScholarPubMed
Goldberg, YP, McMurray, CT, Zeisier, J, et al. Increased instability of intermediate alleles in families with sporadic Huntington disease compared to similar sized intermediate alleles in the general population. Hum Mol Genet. 1995;4:19111918. doi: 10.1093/hmg/4.10.1911.CrossRefGoogle ScholarPubMed
Ruiz De Sabando, A, Ciosi, M, Galbete, A, et al. Somatic CAG repeat instability in intermediate alleles of the HTT gene and its potential association with a clinical phenotype. Eur J Hum Genet. 2024;32:770778. doi: 10.1038/s41431-024-01546-6.CrossRefGoogle ScholarPubMed
Ratna, N, Pasupulati, SL, Nadella, RK, et al. Complexities in genetic counseling and testing of Huntington’s disease: a perspective from India. Neurol India. 2022;70:21412144. doi: 10.4103/0028-3886.359184.CrossRefGoogle ScholarPubMed
Nicolas, G, Devys, D, Goldenberg, A, et al. Juvenile Huntington disease in an 18-month-old boy revealed by global developmental delay and reduced cerebellar volume. Am J Med Genet A. 2011;155:815818. doi: 10.1002/ajmg.a.33911.CrossRefGoogle Scholar
Ellis, N, Tee, A, McAllister, B, et al. Genetic risk underlying psychiatric and cognitive symptoms in Huntington’s disease. Biol Psychiatry. 2020;87:857865. doi: 10.1016/j.biopsych.2019.12.010.CrossRefGoogle ScholarPubMed
Almqvist, E, Elterman, D, MacLeod, P, et al. High incidence rate and absent family histories in one quarter of patients newly diagnosed with Huntington disease in British Columbia. Clin Genet. 2001;60:198205. doi: 10.1034/j.1399-0004.2001.600305.x.CrossRefGoogle ScholarPubMed
Ramos-Arroyo, MA. Incidence and mutation rates of Huntington’s disease in Spain: experience of 9 years of direct genetic testing. J Neurol Neurosurg Psychiatry. 2005;76:337342. doi: 10.1136/jnnp.2004.036806.CrossRefGoogle ScholarPubMed
Semaka, A, Collins, JA, Hayden, MR. Unstable familial transmissions of Huntington disease alleles with 27–35 CAG repeats (intermediate alleles). Am J Med Genet B Neuropsychiatr Genet. 2010;153B:314320. doi: 10.1002/ajmg.b.30970.CrossRefGoogle ScholarPubMed
Brocklebank, D, Gayán, J, Andresen, JM, et al. Repeat instability in the 27–39 CAG range of the HD gene in the Venezuelan kindreds: counseling implications. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:425429. doi: 10.1002/ajmg.b.30826.CrossRefGoogle Scholar
Sequeiros, J, Ramos, E, Cerqueira, J, et al. Large normal and reduced penetrance alleles in Huntington disease: instability in families and frequency at the laboratory, at the clinic and in the population. Clin Genet. 2010;78:381387. doi: 10.1111/j.1399-0004.2010.01388.x.CrossRefGoogle ScholarPubMed
Akçimen, F, Ross, JP, Liao, C, et al. Expanded CAG repeats in ATXN1, ATXN2, ATXN3, and HTT in the 1000 Genomes project. Mov Disord. 2021;36:514518. doi: 10.1002/mds.28341.CrossRefGoogle ScholarPubMed
Paz-y-Miño, C, Salazar-Ruales, C, García-Cárdenas, JM, et al. Study of the Huntington’s disease IT -15 gene in different ethnic groups in Ecuador. Clin Genet. 2017;92:544547. doi: 10.1111/cge.13028.CrossRefGoogle ScholarPubMed
Sundblom, J, Niemelä, V, Ghazarian, M, et al. High frequency of intermediary alleles in the HTT gene in Northern Sweden - the Swedish Huntingtin Alleles and Phenotype (SHAPE) study. Sci Rep. 2020;10:9853. doi: 10.1038/s41598-020-66643-0.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ratna et al. supplementary material

Ratna et al. supplementary material
Download Ratna et al. supplementary material(File)
File 188.9 KB