Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T02:05:34.342Z Has data issue: false hasContentIssue false

Autopsy as Gold Standard in FDG-PET Studies in Dementia

Published online by Cambridge University Press:  02 December 2014

Pascali Durand-Martel
Affiliation:
Neurology Service, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke
Dominic Tremblay
Affiliation:
Nuclear Medicine Department, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke
Catherine Brodeur
Affiliation:
Geriatrics Service, McGill University Health Centre, Montreal, Quebec, Canada
Nancy Paquet*
Affiliation:
Nuclear Medicine Department, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke
*
3001 12e Avenue N, Sherbrooke, Quebec, J1H 5N4, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Positron emission tomography (PET) imaging with F18-fluorodeoxyglucose (FDG) is increasingly used as an adjunct to clinical evaluation in the diagnosis of dementia. Considering that most FDG-PET studies in dementia use clinical diagnosis as gold standard and that clinical diagnosis is approximately 80% sensitive or accurate, we aim to review the evidence-based data on the diagnostic accuracy of brain FDG-PET in dementia when cerebral autopsy is used as gold standard. We searched the PubMed and Medline databases for dementia-related articles that correlate histopathological diagnosis at autopsy with FDG-PET imaging and found 47 articles among which there were only 5 studies of 20 patients or more. We were able to conclude that sensitivity and specificity of FDG-PET for Alzheimer's disease are good, but more studies using histopathological diagnosis at autopsy as gold standard are needed in order to evaluate what FDG-PET truly adds to premortem diagnostic accuracy in dementia.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Chertkow, H, Black, S. Imaging biomarkers and their role in dementia clinical trials. Can J Neurol Sci. 2007;34 Suppl 1: 7783.Google Scholar
2. Knopman, DS, DeKosky, ST, Cummings, JL, Chui, H, Corey-Bloom, J, Relkin, N, et al. Practice parameters: diagnosis of dementia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56:114353.Google Scholar
3. Borrie, M. Functional neuroimaging in the diagnosis of dementia. Alzheimers Dement. 2007;3:33640.Google Scholar
4. Silverman, DHS. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004;45:594607.Google Scholar
5. Blacker, D, Albert, MS, Bassett, SS, Go, RC, Harrell, LE, Folstein, MF. Reliability and validity of NINCDS-ADRDA criteria for Alzheimer’s disease. Arch Neurol. 1994;51:11981204.Google Scholar
6. Lim, A, Tsuang, D, Kukull, W. Clinico-neuropathological correlation of Alzheimer’s disease in a community-Based case series. J Am Geriatr Soc. 1999;47:5649.Google Scholar
7. Lopez, OL, Litvan, I, Catt, KE, Stowe, R, Klunk, W, Kaufer, DI, et al. Accuracy of four clinical diagnostic criteria for the diagnosis of neurodegenerative dementias. Neurology. 1999;53(6):12929.CrossRefGoogle ScholarPubMed
8. Massoud, F, Devi, G, Stern, Y, Lawton, A, Goldman, JE, Liu, Y, et al. A clinicopathological comparison of community-based and clinic-based cohorts of patients with dementia. Arch Neurol. 1999;56:136873.Google Scholar
9. Victoroff, J, Mack, WJ, Lyness, SA, Chui, HC. Multicenter clinicopathological correlation in dementia. Am J Psychiatry. 1995;152(10):147684.Google Scholar
10. Becker, JT, Boller, F, Lopez, OL, Saxton, J, McGonigle, KL. The natural history of Alzheimer’s disease: description of study cohort and accuracy of diagnosis. Arch Neurol. 1994;51:58594.Google Scholar
11. Klatka, LA, Schiffer, RB, Powers, JM, Kazee, AM. Incorrect diagnosis of Alzheimer’s disease: a clinicopathologic study. Arch Neurol. 1996;53:3542.Google Scholar
12. Mendez, MF, Mastri, AR, Sung, JH, Frey, WH 2nd. Clinically diagnosed AD: neuropathologic findings in 650 cases. Alzheimer Dis Assoc Disord. 1992;6:3543.Google Scholar
13. Forman, MS, Farmer, J, Johnson, JK, Clark, CN, Arnold, SE, Koslett, HB, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006;59:95262.Google Scholar
14. Friedland, RP, Prusiner, SB, Jagust, WJ, Budinger, TF, Davis, RL. Bitemporal hypometabolism in Creutzfeldt-Jakob disease measured by positron emission tomography with [18F]-2-fluorodeoxyglucose. J Comput Assist Tomogr. 1984;8:97881.Google Scholar
15. Goldman, S, Liard, A, Flament-Durand, J, Luxen, A, Bidaut, LM, Stanus, E, et al. Positron emission tomography and histopathology in Creutzfeldt-Jakob disease. Neurology. 1993;43:182830.Google Scholar
16. Matochik, JA, Molchan, SE, Zametkin, AJ, Warden, DL, Sunderland, T, Cohen, RM. Regional cerebral glucose metabolism in autopsyconfirmed Creutzfeldt-Jakob disease. Acta Neurol Scand. 1995;91:1537.CrossRefGoogle ScholarPubMed
17. Ogawa, T, Inugami, A, Fujita, H, Hatazawa, J, Shimosegawa, E, Kanno, I, et al. Serial positron emission tomography with fludeoxyglucose F18 in Creutzfeldt-Jakob disease. Am J Neuroradiol. 1995;16:97881.Google Scholar
18. Holthoff, VA, Sandmann, J, Pawlik, G, Schröder, R, Heiss, WD. Positron emission tomography in Creutzfeldt-Jakob disease. Arch Neurol. 1990;47:10358.Google Scholar
19. Tanaka, Y, Minematsu, K, Moriyasu, H, Yamaguchi, T, Yutani, C, Kitamoto, T, et al. A Japanese family with a variant of Gerstmann-Sträussler-Scheinker disease. J Neurol Neurosurg Psychiatry. 1997;62:4547.Google Scholar
20. Hamaguchi, T, Kitamoto, T, Sato, T, Mizusawa, H, Nakamura, Y, Noguchi, M, et al. Clinical diagnosis of MM2-type sporadic Creutzfeldt-Jakob disease. Neurology. 2005;64:6438.Google Scholar
21. Pichler, R, Ciovica, I, Rachinger, J, Weiss, S, Aichneir, FT. Multitracer study in Heidenhain variant of Creutzfeldt-Jakob disease: mismatch pattern of cerebral hypometabolism and perfusion imaging. Neuro Endocrinol Lett. 2008;29:678.Google Scholar
22. McGeer, PL, Kamo, H, Harrop, R, McGeer, EG, Martin, WR, Pate, BD, et al. Comparison of PET, MRI and CT with pathology in a proven case of Alzheimer’s disease. Neurology. 1986;36:156974.Google Scholar
23. McGeer, PL, Kamo, H, Harrop, R, Li, DK, Tuokko, H, McGeer, EG, et al. Positron emission tomography in patients with clinically diagnosed Alzheimer’s disease. CMAJ. 1986;134:597607.Google Scholar
24. Kempler, D, Metter, EJ, Riege, WH, Jackson, CA, Benson, DF, Henson, WR. Slowly progressive aphasia: three cases with language, memory, CT and PET data. J Neurol Neurosurg Psychiatry. 1990;53:98793.Google Scholar
25. Mega, MS, Chen, SS, Thompson, PM, Woods, RP, Karaca, TJ, Tiwari, A, et al. Mapping histology to metabolism: coregistration of stained whole-brain sections to premortem PET in Alzheimer’s disease. Neuroimage. 1997;5:14753.Google Scholar
26. Kile, SJ, Ellis, WG, Olichney, JM, Farias, S, DeCarli, C. Alzheimer abnormalities of the amygdala with Klüver-Bucy syndrome symptoms. Arch Neurol. 2009;66(1):1259.Google Scholar
27. Kamo, H, McGeer, PL, Harrop, R, McGeer, EG, Kalne, DB, Martin, WR, et al. Positron emission tomography and histopathology in Pick’s disease. Neurology. 1987;37(3):43945.Google Scholar
28. Friedland, RP, Koss, E, Lerner, A, Hedera, P, Ellis, D, Dronkers, N, et al. Functional imaging, the frontal lobes and dementia. Dementia. 1993;4:192203.Google Scholar
29. Murrel, JR, Spillantini, MG, Zolo, P, Guazzelli, M, Smith, MJ, Hasegawa, M, et al. Tau gene mutation G389R causes a tauopathy with abundant Pick body-like inclusions and axonal deposits. J Neuropathol Exp Neurol. 1999;58(12):120726.Google Scholar
30. Spina, S, Murrel, JR, Huey, ED, Wassermann, EM, Pietrini, P, Grafman, J, et al. Corticobasal syndrome associated with the A9D progranulin mutation. J Neuropathol Exp Neurol. 2007;66(10):892900.Google Scholar
31. Higuchi, M, Tashiro, M, Arai, H, Okamura, N, Hara, S, Higuchi, S, et al. Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies. Exp Neurol. 2000;162:24756.Google Scholar
32. Tatlidil, R, New, P, Mayberg, H. FDG positron emission tomography in diffuse Lewy Body disease; a case report. Clin Nucl Med. 2000;25:10046.Google Scholar
33. Hisanaga, K, Suzuki, H, Tanji, H, Mochizuki, H, Iwasaki, Y, Sato, N, et al. Fluoro-DOPA and FDG positron emission tomography in a case of pathologically verified pure diffuse Lewy Body disease. J Neurol. 2001;248:9056.Google Scholar
34. Bacskai, BJ, Frosch, MP, Freeman, SH, Raymond, SB, Augustinack, JC, Johnson, KA, et al. Molecular imaging with Pittsburg Compound B confirmed at autopsy. Arch Neurol. 2007;64:4314.Google Scholar
35. Okamura, N, Arai, H, Higuchi, M, Tashiro, M, Matsui, T, Hu, XS, et al. [18F]FDG-PET study in dementia with Lewy bodies and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:44756.Google Scholar
36. Gerstner, E, Lazar, RM, Keller, C, Honig, LS, Lazar, GS, Marshall, RS. A case of progressive apraxia of speech in pathologically verified Alzheimer’s disease. Cogn Behav Neurol. 2007;20:1520.Google Scholar
37. Stanford, PM, Halliday, GM, Brooks, WS, Kwok, JB, Storey, CE, Creazy, H, et al. Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene. Brain. 2000;123:88093.Google Scholar
38. Mizuno, T, Shiga, K, Nakata, Y, Nagura, J, Nakase, T, Ueda, Y, et al. Discrepancy between clinical and pathological diagnoses of CBD and PSP. J Neurol. 2005;252:68797.Google Scholar
39. Shapiro, MB, Pietrini, P, Grady, CL, Ball, MJ, DeCarli, C, Kumar, A, et al. Reductions in parietal and temporal cerebral metabolic rates for glucose are not specific for Alzheimer disease. J Neurol Neurosurg Psychiatry. 1993;56:85964.Google Scholar
40. Akiyama, H, Harrop, R, McGeer, PL, Peppard, R, McGeer, EG. Crossed cerebellar and uncrossed thalamic diaschisis in Alzheimer’s disease. Neurology. 1989;39:5418.Google Scholar
41. McGeer, EG, McGeer, PL, Akiyama, H, Harrop, R. Cortical glutaminase, beta-glucuronidase and glucose utilization in Alzheimer’s disease. Can J Neurol Sci. 1989;16 Suppl 4:5115.Google Scholar
42. McGeer, EG, Peppard, RP, McGeer, PL, Tuokko, H, Crockett, D, Parks, R, et al. 18Fluorodeoxyglucose positron emission tomography studies in presumed Alzheimer’s cases, including 13 serial scans. Can J Neurol Sci. 1990;17:111.Google Scholar
43. Peppard, RF, Martin, WR, Clark, CM, Karr, GD, McGeer, PL, Kalne, DB. Cortical glucose metabolism in Parkinson’s and Alzheimer’s disease. J Neurosci Res. 1990;27:5618.Google Scholar
44. Barker, WW, Yoshii, F, Lowenstein, DA, Chang, JY, Apicella, A, Pascal, S, et al. Lack of correlation of regional neuropathology to the regional PET metabolic deficits in Alzheimer’s disease. J Cereb Blood Flow Metab. 1991;11 Suppl 2:19.Google Scholar
45. DeCarli, C, Atack, JR, Ball, MJ, Kay, JA, Grady, CL, Fewster, P, et al. Post-mortem neurofibrillary tangle densities but not senile plaque densities are related to regional metabolic rates for glucose during life in Alzheimer’s disease patients. Neurodegeneration. 1992;1:11321.Google Scholar
46. Mielke, R, Schröder, R, Fink, GR, Kessler, J, Herholz, K, Heiss, W. Regional cerebral glucose metabolism and postmortem pathology in Alzheimer’s disease. Acta Neuropathol. 1996;91:1749.Google Scholar
47. Mosconi, L, Mistur, R, Switalski, R, Tsui, WH, Glodzik, L, Li, Y, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36:81122.Google Scholar
48. Albin, RL, Minoshima, S, D’Amato, CJ, Frey, KA, Kuhl, DA, Sima, AA. Fluoro-deoxyglucose positron emission tomography in diffuse Lewy body disease. Neurology. 1996;47:4626.Google Scholar
49. Nestor, PJ, Balan, K, Cheow, HK, Fryer, TD, Knibb, JA, Xuereb, JH, et al. Nuclear imaging can predict pathologic diagnosis in progressive nonfluent aphasia. Neurology. 2007;68:2389.Google Scholar
50. Henkel, K, Zerr, I, Hertel, A, Gratz, KF, Shröter, A, Tschampa, HJ, et al. Positron emission tomography with [18F]FDG in the diagnosis of Creutzfeldt-Jakob disease (CJD). J Neurol. 2002;249:699705.Google Scholar
51. Engler, H, Lundberg, PO, Ekbom, K, Nennesmo, I, Nilsson, A, Berström, M, et al. Multitracer study with positron emission tomography in Creutzfeldt-Jakob disease. Eur J Nucl Med Mol Imaging. 2003;30:8595.Google Scholar
52. Salmon, E, Sadzot, B, Maquet, P, Degueldre, C, Lemaire, C, Rigo, P, et al. Differential diagnosis of Alzheimer’s disease with PET. J Nucl Med. 1994;35:3918.Google Scholar
53. Foster, NL, Gilman, S, Berent, S, Sima, AAF, D’Amato, C, Koeppe, RA, et al. Progressive subcortical gliosis and progressive supranuclear palsy can have similar clinical and PET abnormalities. J Neurol Neurosurg Psychiatry. 1992;55:70713.Google Scholar
54. Mishina, M, Ishii, K, Mitani, K, Ohiama, M, Yamazaki, M, Ishiwata, K, et al. Midbrain hypometabolism as early diagnostic sign for progressive supranuclear palsy. Acta Neurol Scand. 2004;110:12835.Google Scholar
55. Arvanitakis, Z, Witte, RJ, Dickson, DW, Tsuboi, Y, Uitti, RJ, Slowinski, J, et al. Clinical-pathologic study of biomarkers in FTDP-17 (PPND family with N279K tau mutation). Parkinsonism Relat Disord. 2007;13:2309.Google Scholar
56. Silverman, DHS, Small, GW, Chang, CY, Lu, CS, Kung De Abarto, MA, Chen, W, et al. Positron emission tomography in evaluation of dementia; regional brain metabolism and long-term outcome. JAMA. 2001;286:21207.Google Scholar
57. Hoffman, JM, Welsh-Bohmer, KA, Hanson, M, Krain, B, Hulette, C, Earl, N, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med. 2000;41:19208.Google Scholar
58. Minoshima, S, Foster, NL, Sima, AAF, Frey, KA, Albin, RL, Kuhl, DE. Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol. 2001;50:35865.Google Scholar
59. Jagust, W, Reed, B, Mungas, D, Ellis, W, DeCarli, C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology. 2007;69:8717.Google Scholar
60. Foster, NL, Heidebrink, JL, Clark, CM, Jagust, WJ, Arnold, SE, Barbas, NR, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain. 2007;130:261635.Google Scholar
61. Herzholz, K, Salmon, E, Perani, D, Baron, JC, Holthoff, V, Frölich, L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17:30216.Google Scholar
62. Raina, P, Santaguida, P, Ismaila, A, Patterson, C, Cowan, D, Levine, N, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148:37997.Google Scholar
63. Gagnon, M, Rive, B, Hux, M, Guilhaume, C. Cost-effectiveness of memantine compared with standard care in moderate to severe Alzheimer disease in Canada. Can J Psychiatry. 2007;52(8): 51926.Google Scholar
64. Dusseault, FP, Nguyen, VH, Ratchet, F. La tomographie par émission de positrons au Québec. Québec (Canada): Agence d'évaluation des technologies et des modes d’intervention en santé; 2001 oct. Report No: AÉTMIS 01-3 RF. Rapport présenté au ministre délégué à la recherche, à la science et à la technologie du Québec.Google Scholar
65. Paquet, N, Primeau, F, Paradis, V, Routhier, G, Simard, M, Bouchard, RW. Comparative value of 99mTc-ECD SPECT and 18FDG PET in atypical dementia: a pilot study with longitudinal follow-up. Eur J Nucl Med. 2008;35:S315.Google Scholar
66. Silverman, DH, Small, GW, Phelps, ME. Clinical value of neuroimaging in the diagnosis of dementia. Sensitivity and specificity of regional cerebral metabolic and other parameters for early identification of Alzheimer’s disease. Clin Positron Imaging. 1999;2:11930.CrossRefGoogle ScholarPubMed
67. Massa, C, Perani, D, Lucignani, G, Zenorini, A, Zito, F, Rizzo, G, et al. High-resolution Technetium-99m-HMPAO SPECT in patients with probable Alzheimer’s disease: comparaison with Fluorine-18-FDG PET. J Nucl Med. 1994;35:2106.Google Scholar
68. Wahlund, LO, Almkvist, O, Blennow, K, Engedahl, K, Johansson, A, Waldemar, G, et al. Evidence-based evaluation of magnetic resonance imaging as a diagnostic tool in dementia workup. Top Magn Reson Imaging. 2005;16:42737.Google Scholar
69. Chow, T. Structural neuroimaging in the diagnosis of dementia. Alzheimers Dement. 2007;3:3335.Google Scholar
70. Tedeschi, E, Hasselbalch, SG, Waldemar, G, Juhler, M, Høgh, P, Holm, S, et al. Heterogenous cerebral glucose metabolism in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 1995;59:60815.Google Scholar