Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T00:26:35.527Z Has data issue: false hasContentIssue false

Biogenic Amine Metabolites and Thiamine in Cerebrospinal Fluid in Heredo-Degenerative Ataxias

Published online by Cambridge University Press:  24 February 2017

M.I. Botez
Affiliation:
Neurology Service, Department of Medicine, Hôtel Dieu Hospital and University of Montréal, Montréal and Department of Psychiatry, McGill University, Montréal
S.N. Young*
Affiliation:
Neurology Service, Department of Medicine, Hôtel Dieu Hospital and University of Montréal, Montréal and Department of Psychiatry, McGill University, Montréal
*
Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montréal, Québec, Canada H3A1A1
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

The aims of the present study were: i) to measure levels of the dopamine metabolite homovanillic acid (HVA), the serotonin metabolite 5-hydroxindoleacetic acid (5HIAA) and precursor tryptophan, as well as the noradrenaline metabolite 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) and thiamine in the cerebrospinal fluid (CSF) of patients with Friedreich's ataxia (FA), olivopontocerebellar atrophy (OPCA), and the autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSAC), as compared with sex- and age-matched control subjects.

Patients and methods:

CSF amine related compound levels and thiamine results were compared in 40 FA, 44 OPCAand nine ARSAC patients with those of 94 sex- and age-matched subjects. Neuroimaging (CT scans and single photon emission computed tomographies i.e. SPECT) were carried out in all patients and controls. Genetic studies were conducted on OPCApatients. CSF amine related compounds were measured by high performance liquid chromatography, whereas CSF thiamine levels were measured by a microbiological method.

Results:

FA patients had significantly lower CSF HVA, 5HIAA and thiamine values than control patients and a trend for lower MHPG levels. In OPCA patients, CSF HVA, MHPG and thiamine values were markedly lower whereas CSF 5HIAA values showed only a trend towards lower levels; in ARSAC patients only thiamine and HVA CSF values were lower than those in control subjects.

Conclusion:

After presenting the relationships between neurochemical findings on one side, the degree of ataxia, the degree of cerebellar atrophy and the SPECT findings on the other, the authors concluded that replacement and neuroprotective clinical trials in these patients would have to include two or three drugs because the neurotransmitter deficiencies are multiple.

Résumé:

RÉSUMÉ:Introduction:

Les buts de cette étude étaient de mesurer les niveaux d'acide homovanillique (HVA), un métabolite de la dopamine, d'acide 5-hydroxindoleacétique (5HIAA) , un métabolite de la sérotonine, et de son précurseur, le tryptophane, ainsi que du 3-méthoxy-4-hydroxyphényléthylène glycol (MHPG), un métabolite de la noradrénaline et de la thiamine dans le liquide céphalorachidien (LCR) de patients atteints d'ataxie de Friedreich (AF), d'atrophie olivopontocérébelleuse (OPCA) et d'ataxie spastique autosomale récessive de Charlevoix-Saguenay (ARSAC) et de les comparer à ceux de sujets contrôles appariés pour le sexe et l'âge.

Patients et méthodes:

Les niveaux de composés reliés aux amines du LCR et les résultats de thiamine ont été comparés chez 40 patients atteints d'AF, 44 d'OPCAet neuf d'ARSAC à ceux de 94 sujets contrôles appariés pour le sexe et l'âge. Des examens de neuroimagerie (CT scan et tomographie à émetteur gamma i.e. SPECT) ont été effectués chez tous les patients et les contrôles. Les patients atteints d'OPCA ont également subi des tests génétiques. Les composés reliés aux amines du LCR ont été mesurés par chromatographie à haute pression en phase liquide et les niveaux de thiamine ont été mesurés par une méthode microbiologique.

Résultats:

Les patients atteints d'AF avaient des valeurs de HVA, de 5HIAAet de thiamine du LCR significativement plus basses que les sujets contrôles et une tendance à des niveaux plus bas de MHPG. Chez les patients atteints d'OPCA, les valeurs de HVA, de MHPG et de thiamine du LCR étaient beaucoup plus basses, alors que les valeurs de 5HIAAdu LCR avaient seulement une tendance à être plus basses; chez les patients atteints d'ARSAC, seulement les valeurs de thiamine et de HVA du LCR étaient plus basses que celles des sujets contrôles.

Conclusions:

Les auteurs présentent les relations entre les observations neurochimiques d'une part et le degré d'ataxie et d'atrophie cérébelleuse et les observations de neuroimagerie d'autre part et ils concluent que les essais thérapeutiques de remplacement et de neuroprotection chez ces patients devraient inclure deux ou trois médicaments à cause des déficits multiples en neurotransmetteurs.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2001

References

REFERENCES

1. Ichikawa, N. Study of monoamine metabolite contents of cerebrospinal fluid in patients with neurodegenerative diseases. Tohoku J Exp Med 1986;150:435446.CrossRefGoogle ScholarPubMed
2. Botez, MI, Young, SN, Botez, T, Courchesne, Y. Treatment of Friedreich’s ataxia with amantadine. Neurology 1989;39:749750.CrossRefGoogle ScholarPubMed
3. Polinsky, RJ, Brown, RT, Burns, RS, Harvey-White, J, Kopin, IJ. Low lumbar CSF levels of homovanillic acid and 5-hydroxyindoleacetic acid in multiple system atrophy with autonomic failure. J Neurol Neurosurg Psychiatry 1988;51:914919.CrossRefGoogle ScholarPubMed
4. Amalric, M, Koob, GF. Depletion of dopamine in the caudate nucleus but not in nucleus accumbens impairs reaction-time performance in rats. J Neurosci 1987;7:21292134.CrossRefGoogle Scholar
5. Sawaguchi, T. Catecholamine sensitivities of neurons related to a visual reaction time task in the monkey prefrontal cortex. J Neurophysiol 1987;58:11001122.CrossRefGoogle ScholarPubMed
6. Taghzouti, K, Le Moal, M, Simon, H. Suppression of noradrenergic innervation compensates for behavioral deficits induced by lesion of dopaminergic terminals in the lateral septum. Brain Res 1991; 552:124128.CrossRefGoogle ScholarPubMed
7. Bickford, P. Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res 1993; 620:133138.CrossRefGoogle ScholarPubMed
8. Lalonde, R, Joyal, CC, Guastavino, JM, Côté, C, Botez, MI. Amantadine and ketamine-induced improvement of motor coordination in lurcher mutant mice. Restor Neurol Neurosci 1993;5:367370.Google ScholarPubMed
9. McEntee, WJ, Mair, RG. Memory impairment in Korsakoffs psychosis: a correlation with brain noradrenergic activity. Science 1978;202:905907.CrossRefGoogle ScholarPubMed
10. Mair, RG, McEntee, WJ. Cognitive enhancement in Korsakoff’s psychosis by clonidine: a comparison with L-dopa and ephedrine. Psychopharmacology 1986;88:374380.CrossRefGoogle ScholarPubMed
11. El-Awar, M, Kish, S, Oscar-Berman, M, et al. Selective delayed alternation deficits in dominantly inherited olivopontocerebellar atrophy. Brain Cogn 1991;16:121129.CrossRefGoogle ScholarPubMed
12. Oertel, WH. Neurotransmitters in the cerebellum: scientific aspects and clinical relevance. In: Harding, AE, Deufel, TE, eds. Advances in Neurology, Volume 61. New York: Raven Press, 1993:3375.Google Scholar
13. Pedraza, OL, Botez, MI. Thiamine status in inherited degenerative ataxias. J Neurol Neurosurg Psychiatry 1992;55:136137.CrossRefGoogle ScholarPubMed
14. Plaitakis, A, Nicklas, WJ, Berl, S. Thiamine deficiency: selective impairment of the cerebellar serotonergic system. Neurology 1978;28:691698.CrossRefGoogle ScholarPubMed
15. Mair, RG, Anderson, CD, Langlais, PJ, McEntee, WJ. Thiamine deficiency depletes cortical norepinephrine and impairs learning processes in the rat. Brain Res 1985;360:273284.CrossRefGoogle ScholarPubMed
16. Botez, MI, Young, SN, Bachevalier, J, Gauthier, S. Thiamine deficiency and cerebrospinal fluid 5-hdroxyindoleacetic acid: a preliminary study. J Neurol Neurosurg Psychiatry 1982;45:731733.CrossRefGoogle ScholarPubMed
17. Botez, MI, Young, SN. Effects of anticonvulsant treatment and low levels of folate and thiamine on amine metabolites in cerebrospinal fluid. Brain 1991;114:333348.Google ScholarPubMed
18. Botez, MI, Attig, E, Vézina, JL. Cerebellar atrophy in epileptic patients. Can J Neurol Sci 1988;15:299303.CrossRefGoogle ScholarPubMed
19. Botez, MI, Pedraza, OL, Botez-Marquand, T, Vézina, JL, Elie, R. Radiologic correlates of reaction time measurements in olivopontocerebellar atrophy. Eur Neurol 1993;33:304309.CrossRefGoogle ScholarPubMed
20. Noica, D, Draganesco, S. Sur un symptôme caractéristique d’une lésion des noyaux centraux moteurs: la rigidité musculaire latente. Rev Neurol 1935;63:7579.Google Scholar
21. Harding, AE. The inherited ataxias. In: Di Donato, S, ed. Molecular Genetics of Neurological and Neuromuscular Disease: Advances in Neurology, Volume 48. New York: Raven Press, 1988:3745.Google Scholar
22. Lopes-Cendes, I, Andermann, E, Attig, E, et al. Confirmation of the SCA-2 locus as an alternative locus for dominantly inherited spinocerebellar ataxias and refinement of the candidate region. Am J Hum Genet 1994;54:774781.Google ScholarPubMed
23. Bouchard, JP, Bouchard, RW, Gagné, I, Richer, A, MelanÇon, SB. Recessive spastic ataxia of Charlevoix-Saguenay (RSACS): clinical, morphologic and genetic studies. In: Lechtenberg, R, ed. Handbook of Cerebellar Disease. New York: Marcel Dekker Inc, 1992:399406.Google Scholar
24. Huckman, MS, Fox, J, Topel, J. The validity of criteria for the evaluation of cerebral atrophy by computed tomography. Radiology 1975;116:8592.CrossRefGoogle ScholarPubMed
25. Hahn, FJ, Rim, K. Frontal ventricular dimensions on normal computed tomography. Am J Roentgenol 1976;126:593596.CrossRefGoogle ScholarPubMed
26. Broich, K, Hartmann, A, Biersack, HJ, Horn, R. Crossed cerebello-cerebral diaschisis in a patient with cerebellar infarction. Neurosci Lett 1987;83:712.CrossRefGoogle Scholar
27. Botez, MI, Botez, T, Léveillé, J, Lambert, R. Cerebello-cerebral diaschisis. Neurology 1990;40 (suppl 1):173.Google Scholar
28. Botez, MI, Léveillé, J, Lambert, R, Botez, T. Single photon emission computed tomography (SPECT) in cerebellar disease: cerebello-cerebral diaschisis. Eur Neurol 1991;31:405412.CrossRefGoogle ScholarPubMed
29. Rousseaux, M, Steinling, M. Crossed hemispheric diaschisis in unilateral cerebellar lesions. Stroke 1992;23:511514.CrossRefGoogle ScholarPubMed
30. Sonmezoglu, K, Sperling, B, Henriksen, T, Tfelt-Hansen, P, Lassen, NA. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions: crossed cerebral diaschisis. Acta Neurol Scand 1993;87:275280.Google ScholarPubMed
31. Botez-Marquand, T, Léveillé, J, Botez, MI. Neuropsychological functioning in unilateral cerebellar damage. Can J Neurol Sci 1994;21:353357.CrossRefGoogle Scholar
32. Baker, H, Frank, O. Clinical Vitaminology: Methods and Interpretation. New York: John Wiley and Sons, 1968:117143.Google Scholar
33. Bachevalier, J, Joyal, C, Botez, MI. Blood thiamine and blood folate levels. A comparative study in control, alcoholic and folatedeficient subjects. Int J Vitam Nutr Res 1981;51:205210.Google Scholar
34. Rindi, G. Metabolism of thiamin and its phosphoric esters in different regions of the nervous system: a new approach. Acta Vitaminol Enzymol 1982;4:5968.Google ScholarPubMed
35. Anderson, GM, Young, JG, Cohen, DJ, Shaywitz, BA, Batter, DK. Amperometric determination of 3-methoxy-4-hydroxyphenyl-ethyleneglycol in human cerebrospinal fluid. J Chromatogr 1981; 222:112115.Google Scholar
36. Anderson, GM, Young, JG, Cohen, DJ. Rapid liquid chromatographic determination of tryptophan, tyrosine, 5-hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid. J Chromatogr 1979;164:501505.CrossRefGoogle ScholarPubMed
37. Huang, YP, Plaitakis, A. Morphological changes in olivoponto-cerebellar atrophy in computed tomography and comments on its pathogenesis. In: Duvoisin, RC, Plaitakis, A, eds. The Olivopontocerebellar Atrophies. New York: Raven Press, 1984:3985.Google Scholar
38. Wadia, NH, Swami, RK. A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain 1971;94:359374.CrossRefGoogle ScholarPubMed
39. Campanella, G, Filla, A, DeFalco, F, et al. Friedreich–s ataxia in the south of Italy: a clinical and biochemical survey of 23 patients. Can J Neurol Sci 1980;7:351357.CrossRefGoogle ScholarPubMed
40. Trouillas, P, Charles, N, Renaud, B, Eynard, P. CSF serotonergic abnormalities in acquired and hereditary ataxias. In: Trouillas, P, Fuxe, K, eds. Serotonin, the Cerebellum and Ataxia. New York: Raven Press, 1992:311322.Google Scholar
41. Kish, SJ, Robitaille, Y, El-Awar, M, et al. Striatal monoamine neurotransmitters and metabolites in dominantly inherited olivopontocerebellar atrophy. Neurology 1992;42:15731577.CrossRefGoogle ScholarPubMed
42. Efthimiopoulos, S, Giompres, P, Valcana, T. Kinetics of dopamine and noradrenaline transport in synaptosomes from cerebellum, striatum and frontal cortex of normal and reeler mice. J Neurosci Res 1991;29:510519.CrossRefGoogle ScholarPubMed
43. Panagopoulos, NT, Papadopoulos, GC, Matsokis, NA Dopaminergic innervation and binding in the rat cerebellum. Neurosci Lett 1991;130:208212.CrossRefGoogle ScholarPubMed
44. Deutch, AY, Elsworth, JD, Roth, RH, Goldstein, M. 3-Acetylpyridine results in degeneration of the extrapyramidal and cerebellar motor systems: loss of the dorsolateral striatal dopamine innervation. Brain Res 1990;527:96102.CrossRefGoogle ScholarPubMed
45. Kish, SJ, Robitaille, Y, Schut, L, et al. Normal serotonin but elevated 5-hydroxyindoleacetic acid concentration in cerebellar cortex of patients with dominantly-inherited olivopontocerebellar atrophy. Neurosci Lett 1992;144:8486.CrossRefGoogle ScholarPubMed
46. Strazielle, C, Lalonde, R, Riopel, L, Botez, MI, Reader, TA. Regional distribution of the 5-HT innervation in the brain of normal and lurcher mice as revealed by [3H]citalopram quantitative autoradiography. J Chem Neuroanat 1996;10:157171.CrossRefGoogle ScholarPubMed
47. Ågren, H, Mefford, IN, Rudorfer, MV, Linnoila, M, Potter, WZ. Interacting neurotransmitter systems: a non-experimental approach to the 5HIAA-HVA correlation in human CSF. J Psychiat Res 1986;20:175193.CrossRefGoogle Scholar
48. Kish, SJ, Shannak, KS, Hornykiewicz, O. Reduction of noradrenaline in cerebellum of patients with olivopontocerebellar atrophy. J Neurochem 1984;42:14761478.CrossRefGoogle ScholarPubMed
49. Powers, RE, O’Connor, DT, Price, DL. Noradrenergic systems in human cerebellum. Brain Res 1989;481:194199.CrossRefGoogle ScholarPubMed
50. Watson, M, McElligott, JG. Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Res 1984;296:129138.CrossRefGoogle ScholarPubMed
51. Reggiani, C, Patrini, C, Rindi, G. Nervous tissue thiamine metabolism in vivo. I. Transport of thiamine and thiamine monophosphate from plasma to different brain regions of the rat. Brain Res 1984; 293:319327.CrossRefGoogle ScholarPubMed
52. Rindi, G, Comincioli, V, Reggiani, C, Patrini, C. Nervous tissue thiamine metabolism in vivo. II. Thiamine and its phosphoesters dynamics in different brain regions and sciatic nerve of the rat. Brain Res 1984;293:329342.CrossRefGoogle ScholarPubMed
53. Robertson, DM, Wasan, SM, Skinner, DB. Ultrastructural features of early brain stem lesions of thiamine-deficient rats. Am J Pathol 1968;52:10811097.Google ScholarPubMed
54. Chan-Palay, V, Plaitakis, A, Nicklas, W, Berl, S. Autoradiographic demonstration of loss of labeled indoleamine axons of the cerebellum in chronic diet-induced thiamine deficiency. Brain Res 1977;138:380384.CrossRefGoogle ScholarPubMed
55. Rascol, A, Clanet, M, Montastruc, JL, Delage, W, Guiraud-Chaumeil, B. L-5-hydroxytryptophan in the cerebellar syndrome treatment. Biomedicine 1981;35:112113.Google Scholar
56. Trouillas, P, Brudon, F, Adeleine, P. Improvement of cerebellar ataxia with levorotatory form of 5-hydroxytryptophan. A double-blind study with quantified data processing. Arch Neurol 1988; 45:12171222.CrossRefGoogle ScholarPubMed
57. Wessel, K, Hermsdorfer, J, Deger, K, et al. Double-blind crossover study with levorotatory form of hydroxytryptophan in patients with degenerative cerebellar diseases. Arch Neurol 1995;52:451455.CrossRefGoogle ScholarPubMed
58. Lou, JS, Goldfarb, L, McShane, L, Gatev, P, Hallett, M. Use of buspirone for treatment of cerebellar ataxia. An open-label study. Arch Neurol 1995;52:982988.CrossRefGoogle ScholarPubMed
59. Trouillas, P, Xie, J, Adeleine, P. Treatment of cerebellar ataxia with buspirone: a double-blind study. Lancet 1996;348:759.CrossRefGoogle ScholarPubMed
60. Botez, MI, Young, SN, Botez, T, Pedraza, OL. Treatment of heredo-degenerative ataxias with amantadine hydrochloride. Can J Neurol Sci 1991;18:307311.CrossRefGoogle ScholarPubMed
61. Botez, MI, Botez-Marquand, T, Elie, R, et al. Amantadine hydrochloride treatment in heredo-degenerative ataxias: a double blind study. J Neurol Neurosurg Psychiatry 1996;61:259264.CrossRefGoogle Scholar
62. Bormann, J. Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur J Pharmacol 1989;166:591592.CrossRefGoogle ScholarPubMed
63. Kornhuber, J, Bormann, J, Retz, W, Hubers, M, Riederer, P. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 1989; 166:589590.CrossRefGoogle ScholarPubMed
64. Chen, HS, Pellegrini, JW, Aggarwal, SK, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 1992;12:44274436.CrossRefGoogle ScholarPubMed