Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T00:57:47.611Z Has data issue: false hasContentIssue false

The Brain of the Planarian as the Ancestor of the Human Brain

Published online by Cambridge University Press:  18 September 2015

Harvey B. Sarnat*
Affiliation:
Departments of Paediatrics, Pathology, and Clinical Neurosciences, University of CalgaryFaculty of Medicine, Calgary, Alberta
Martin G. Netsky
Affiliation:
Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A.
*
Alberta Children's Hospital, 1820 Richmond Road S.W., Calgary, Alberta T2T 5C7
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The planarian is the simplest living animal having a body plan of bilateral symmetry and cephalization. The brain of these free-living flatworms is a biiobed structure with a cortex of nerve cells and a core of nerve fibres including some that decussate to form commissures. Special sensory input from chemoreceptors, photoreceptor cells of primitive eyes, and tactile receptors are integrated to provide motor responses of the entire body, and local reflexes. Many morphological, electrophysiological, and pharmacological features of planarian neurons, as well as synaptic organization, are reminiscent of the vertebrate brain. Multipolar neurons and dendritic spines are rare in higher invertebrates, but are found in the planarian. Several neurotransmitter substances identified in the human brain also occur in the planarian nervous system. The planarian evolved before the divergence of the phylogenetic line leading to vertebrates. This simple worm therefore is suggested as a living example of the early evolution of the vertebrate brain. An extraordinary plasticity and regenerative capacity, and sensitivity to neurotoxins, provide unique opportunities for studying the reorganization of the nervous system after injury. Study of this simple organism may also contribute to a better understanding of the evolution of the human nervous system.

Type
Special Features
Copyright
Copyright © Canadian Neurological Sciences Federation 1985

References

REFERENCES

1.Best, JB.Transphyletic animal similarities and predictive toxicology. In: Van der Merwe, A, ed. Old and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology. New York: Plenum Press. 1983: 549591.CrossRefGoogle Scholar
2.Heller, ZT, Hauser, J.Relation between sizes of cocoons of Dugesia shubarti and number and size of eclodid babies. IV Int. Symposium on the Biology of Turbellaria. Fredericton, New Brunswick. Aug. 5–9, 1984.Google Scholar
3.Pigon, A, Morita, M, Best, JB.Cephalic mechanisms for the social controloffissioninginplanarians. 11. Localization and identification of the receptors by electronmicrographic and abaltion studies. J Neurobiol 1974; 5: 443462.CrossRefGoogle Scholar
4.Bullock, TH.Horridge, GA.Structure and Function of the Nervous System of Invertebrates. 2 vols. San Francisco: Freeman. 1965: 14, 53, 318, 535–595, 1603–1604.Google Scholar
5.Morita, M, Best, JB.Electron microscopic studies of planaria. 111. Some observations of the fine structure of planarian nervous tissue. J Exp Zool 1966: 161: 391412.CrossRefGoogle Scholar
6.Sarnat, HB, Netsky, MG.Evolution of the Nervous System. 2nd edition. New York: Oxford University Press. 1981: 1019:55–58.Google Scholar
7.Keenan, CL, Cross, R, Koopowitz, H.Cytoarchitecture of primitive brains: Golgi studies in flatworms. J Comp Neurol 1981; 195: 697716.Google Scholar
8.Koopowitz, H.The evolution of the nervous system in the turbellaria. IV International Symposium on the Biology of the Turbellaria. Fredericton, New Brunswick. Aug 5–9, 1984.Google Scholar
9.Gruber, SA, Ewer, DW.Observations on the myo-neural physiology of the polyclad, Planocera gilchristi. J Exp Biol 1962; 39: 459477.CrossRefGoogle Scholar
10.Lender, T, Klein, N.Mise en évidence de cellules sécrétrices dans le cerveau de la planaire Polycelis nigra. CR Acad Scie Paris 1961 : 253;33l333.Google Scholar
11.Oosaki, T, Ishii, S.Observations on the ultrastructure of nerve cells in the brain of the planarian Dugesia gonocephala. Ztschr Zellforsch 1965; 66: 782793.CrossRefGoogle ScholarPubMed
12.Morita, M, Best, JB.Electron microscopic studies of planaria. II. Fine structure of the neurosecretory system in the planarian Dugesia dorotocephala. J Ultrastruct Res 1965; 13: 396408.CrossRefGoogle ScholarPubMed
13.Lender, Th.Endrocrinologie des planaires. Bull Soc Zool Fr 1980: 105: 173191.Google Scholar
14.Morita, M, Best, JB.Effects of photoperiods and melatonin on planarian asexual reproduction. J Exp Zool 1984; 231: 273282.CrossRefGoogle Scholar
15.Bullock, TH, Nachmansohn, D.Cholinesterase in primitive nervous systems. J Cell Comp Physiol 1942; 20: 239242.CrossRefGoogle Scholar
16.Welsh, JH, Moorhead, M.The quantitative distribution of 5-hydro-xytryptamine in the invertebrates, especially in their nervous systems. J Neurochem 1960; 146169.CrossRefGoogle Scholar
17.Lentz, TZ.Histochemical localization of acetylcholinesterase activ-ity in a planarian. Comp Biochem Physiol 1968; 27: 715718.CrossRefGoogle Scholar
18.Welsh, JH, Williams, LD.Monoamine-containing neurons in planaria. J Comp Neurol 1970; 138: 103116.CrossRefGoogle ScholarPubMed
19.Best, JB, Noel, J.Complex synaptic configurations in planarian brain. Science 1969; 164: 10701071.CrossRefGoogle ScholarPubMed
20.Koopowitz, H, Chien, P.Ultrastructure of nerve plexuses in flatworms. 11.Sitesofsynaptic interactions.CellTiss Res 1975; 157:207216.Google Scholar
21.Koopowitz, H, Kennan, L, Bernardo, K.Primitive nervous systems: Electrophysiology of inhibitory events in flatworm nerve cords. J Neurobiol 1979; 10: 383395.CrossRefGoogle ScholarPubMed
22.Keenan, L, Koopowitz, H, Bernardo, K.Action of aminergic drugs and blocking agents in activity in the ventral nerve cord of the flatworm Notoplana acticola. J Neurobiol 1979; 10: 397407.CrossRefGoogle ScholarPubMed
23.Koopowitz, H.Free-living Platyhelminthes. In: Shelton, GAB, ed. Electrical Conduction and Behaviour in ‘Simple’ Invertebrates. Oxford: Clarendon Press, 1982: 359392.Google Scholar
24.Macrae, EK.Fine structure of photoreceptors in a marine flatworm. Ztschr Zellforsch 1966; 75: 469484.CrossRefGoogle Scholar
25.Carpenter, K, Morita, M, Best, JB.Ultrastructure of the photoreceptor of the planarian Dugesia dorotocephala. I. Normal eye. Cell Tiss Res 1974; 148: 143158.CrossRefGoogle ScholarPubMed
26.Carpenter, K, Morita, M, Best, JB.Ultrastructure of the photoreceptor of the planarian Dugesia dorotocephala II. Changes induced by darkness and light. Cytobiologie 1974; 8: 320338.Google Scholar
27.Röhlich, P, Török, LJ.Elektronenmikroskopische Untersuchangen des Auges von Planarien. Ztschr Zellforsch 1961; 54: 362381.CrossRefGoogle Scholar
28.Macrae, EK.Observations on the fine structure of the photoreceptor cell in the planarian Dugesia tigrina. J Ultrastruc Res 1964; 10: 334349.CrossRefGoogle ScholarPubMed
29.Sarnat, HB.Muscle histochemistry of the planarian Dugesia tigrina (Turbellaria: Tricladida): Implications in the evolution of muscle. Tr Am Micr Soc 1984; 103: 284294.CrossRefGoogle Scholar
30.Brønsted, HV.Planarian Regeneration. Oxford, Toronto: Pergamon Press. 1969: 83–100; 129–136.Google Scholar
31.Best, JB, Rubenstein, I.Maze learning and associated behaviour in planaria. J Comp Physiol Psychol 1962; 55: 560566.CrossRefGoogle ScholarPubMed
32.Best, JB, Rubenstein, I.Environmental familiarity and feeding in a planarian. Science 1962; 135: 916918.CrossRefGoogle Scholar
33.Best, JB.Protopsychology. Sci Amer 1963; 208: 5462 (Feb).CrossRefGoogle ScholarPubMed
34.Koopowitz, H.Feeding behaviour and the role of the brain in the polyclad flatworm, Planocera gilchristi. Anim Behav 1970;18: 3135.CrossRefGoogle Scholar
35.Jensen, DD.Hoplonemertines, myxinoids, and deuterostome origins. Nature 1960; 188: 649650.CrossRefGoogle Scholar
36.Willmer, EN.The possible contribution of nemertines to the problem of the phylogeny and the protochordates. Symp Zool Soc Lond 1975; 39: 319345.Google Scholar
37.Dethier, V.Microscopic brains. Science 1964; 10: 11381145.CrossRefGoogle Scholar
38.Clark, RB.On the origin of neurosecretory cells. Ann Sci Nat Zool 1956; 18: 199207.Google Scholar
39.Grundfest, H.Evolution of electrophysiological properties among sensory receptor systems. In: Pringle, JWS, ed. Essays on Physiological Evolution. Oxford: Pergamon Press. 1965: 107138.Google Scholar
40.Freed, WJ, Morishasa, JM, Spoor, E, et al. Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour. Nature 1981; 292: 351352.CrossRefGoogle ScholarPubMed