Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:41:01.841Z Has data issue: false hasContentIssue false

A Comparison of CT Contrast Enhancement and BUDR Labeling Indices in Moderately and Highly Anaplastic Astrocytomas of the Cerebral Hemispheres

Published online by Cambridge University Press:  18 September 2015

Michael W. McDermott*
Affiliation:
Department of Neurological Surgery, Division of Neuro-Oncology (M.W.M., H.G.J.K., M.D.P.) and the Brain Tumor Research Center (A.A., S.I., T.H.), School of Medicine, University of California, San Francisco, California, U.S.A
Hendrikus G.J. Krouwer*
Affiliation:
Department of Neurological Surgery, Division of Neuro-Oncology (M.W.M., H.G.J.K., M.D.P.) and the Brain Tumor Research Center (A.A., S.I., T.H.), School of Medicine, University of California, San Francisco, California, U.S.A
Akio Asai*
Affiliation:
Department of Neurological Surgery, Division of Neuro-Oncology (M.W.M., H.G.J.K., M.D.P.) and the Brain Tumor Research Center (A.A., S.I., T.H.), School of Medicine, University of California, San Francisco, California, U.S.A
Satoyuki Ito*
Affiliation:
Department of Neurological Surgery, Division of Neuro-Oncology (M.W.M., H.G.J.K., M.D.P.) and the Brain Tumor Research Center (A.A., S.I., T.H.), School of Medicine, University of California, San Francisco, California, U.S.A
Takao Hoshino*
Affiliation:
Department of Neurological Surgery, Division of Neuro-Oncology (M.W.M., H.G.J.K., M.D.P.) and the Brain Tumor Research Center (A.A., S.I., T.H.), School of Medicine, University of California, San Francisco, California, U.S.A
Michael D. Prados*
Affiliation:
Department of Neurological Surgery, Division of Neuro-Oncology (M.W.M., H.G.J.K., M.D.P.) and the Brain Tumor Research Center (A.A., S.I., T.H.), School of Medicine, University of California, San Francisco, California, U.S.A
*
Department of Neurological Surgery, c/o The Editorial Office, 1360 Ninth Avenue, Suite 210, San Francisco, California, U.S.A., 94122
Department of Neurological Surgery, c/o The Editorial Office, 1360 Ninth Avenue, Suite 210, San Francisco, California, U.S.A., 94122
Department of Neurological Surgery, c/o The Editorial Office, 1360 Ninth Avenue, Suite 210, San Francisco, California, U.S.A., 94122
Department of Neurological Surgery, c/o The Editorial Office, 1360 Ninth Avenue, Suite 210, San Francisco, California, U.S.A., 94122
Department of Neurological Surgery, c/o The Editorial Office, 1360 Ninth Avenue, Suite 210, San Francisco, California, U.S.A., 94122
Department of Neurological Surgery, c/o The Editorial Office, 1360 Ninth Avenue, Suite 210, San Francisco, California, U.S.A., 94122
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Contrast enhancement on computerized tomography (CT) scans has been used in directing therapy for presumed intracranial gliomas. However, for moderately anaplastic astrocytomas (MOAAS) and highly anaplastic astrocytomas (HAAS), it provides no information about proliferative potential. The bromodeoxyuridine (BUDR) labeling index (LI), however, indicates proliferative potential, correlating with histologic malignancy and survival. An LI < 1% is a favorable indicator; LI > 5% suggests more aggressiveness. To determine the correlation, if any, between BUDR LI and contrast enhancement, CT scans of 71 patients with cerebral hemisphere tumors labeled with BUDR were retrospectively reviewed. Among 36 MOAAS, the BUDR LI was < 1% in 77% of enhanced tumors and 61% of unenhanced tumors. Among 35 HAAS, it was < 5% in 56% of enhanced tumors and 90% of unenhanced tumors. Therefore, contrast enhancement on CT scans does not always correctly predict proliferative potential in these tumors, and biopsy and labeling studies are recommended before therapy.

Type
Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1992

References

1. Butler, AR, Horii, SC, Kricheff, II, et al. Computed tomography in astrocytomas. Radiology 1978; 129: 433439.CrossRefGoogle ScholarPubMed
2. Butler, AR, Passalaqua, AM, Berenstein, A, et al. Contrast enhanced CT scan and radionuclide brain scan in supratentorial gliomas. Am J Roentgenol 1979; 132: 607611.CrossRefGoogle ScholarPubMed
3. Earnest, F, Kelly, PJ, Scheithauer, BW, et al. Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 1988; 166: 823827.CrossRefGoogle ScholarPubMed
4. Lilja, A, Bergstrom, K, Spannare, B, et al. Reliability of computed tomography in assessing histopathological features of malignant supratentorial gliomas. J Comput Assist Tomogr 1981; 5: 625636.Google ScholarPubMed
5. Joyce, P, Bentson, J, Takahashi, M, et al. The accuracy of predicting histologic grades of supratentorial astrocytomas on the basis of computerized tomography and cerebral angiography. Neuroradiology 1978; 16: 346348.CrossRefGoogle ScholarPubMed
6. Kendall, BE, Jakubowski, J, Pullicino, P, et al. Difficulties in diagnosis of supratentorial gliomas by CAT scan. J Neurol Neurosurg Psychiatry 1979; 42: 485492.CrossRefGoogle ScholarPubMed
7. Marks, JE, Gado, M.Serial computed tomography of primary tumors following surgery, irradiation, and chemotherapy. Radiology 1977; 125: 119125.Google ScholarPubMed
8. Steinhoff, H, Lanksch, W, Kazner, E, et al. Computed tomography in the diagnosis and differential diagnosis of glioblastomas. Neuroradiology 1977; 14: 193200.CrossRefGoogle ScholarPubMed
9. Chamberlain, MC, Murovic, JA, Levin, VA.Absence of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas. Neurology 1988; 38: 13711374.CrossRefGoogle Scholar
10. Tchang, S, Scotti, G, Terbrugge, K, et al. Computerized tomography as a possible aid to histological grading of supratentorial gliomas. J Nerosurg 1977; 46: 735739.Google ScholarPubMed
11. Leeds, NE, Elkin, CM, Zimmerman, RD.Gliomas of the brain. Semin Roentgenol 1984; 19: 2743.CrossRefGoogle ScholarPubMed
12. Silverman, C, Marks, JE.Prognostic significance of contrast enhancement in low-grade astrocytomas of the adult cerebrum. Radiology 1981; 139:211213.CrossRefGoogle ScholarPubMed
13. Piepmeier, JM.Observations on the current treatment of low-grade astrocytic tumors of the cerebral hemispheres. J Neurosurg 1987; 67: 177181.CrossRefGoogle ScholarPubMed
14. Hoshino, T.Immunohistochemical analysis of the proliferative potential of nervous system tumors. In: ISI Atlas of Science: Immunology. Philadelphia: ISI, 1988: 5357.Google Scholar
15. Hoshino, T, Nagashima, T, Cho, KG, et al. Variability in the proliferative potential of human gliomas. J Neurooncol 1989; 7: 137143.CrossRefGoogle ScholarPubMed
16. Hoshino, T, Prados, M, Wilson, CB, et al. Prognostic implications of the bromodeoxyuridine labeling index of human gliomas. J Neurosurg 1989; 71: 335341.CrossRefGoogle ScholarPubMed
17. Hoshino, T, Rodriguez, LA, Cho, KG, et al. Prognostic implications of the proliferative potential of low-grade astrocytomas. J Neurosurg 1988; 69: 839842.Google ScholarPubMed
18. Schecter, MM.Cerebral angiography. In: Youmans, JR, ed. Neurological Surgery, 2nd Ed. Vol 1. Philadelphia: WB Saunders, 1982: 231350.Google Scholar
19. Wilkinson, RH Jr., Goodrich, JK.Radionuclide imaging studies. In: Youmans, JR, ed. Neurological Surgery, 2nd Ed. Vol 1. Philadelphia: WB Saunders, 1982: 143175.Google Scholar
20. Kelly, PJ, Daumas-Duport, C, Scheithauer, BW, et al. Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 1987; 62: 450459.Google ScholarPubMed
21. Steinhoff, H, Grumme, T, Kazner, E, et al. Axial transverse computed tomography in 73 glioblastomas. Acta Neurochir (Wien) 1978; 42: 4556.CrossRefGoogle ScholarPubMed
22. Morantz, RA, Radiation therapy in the treatment of cerebral astrocytoma. Neurosurgery 1987; 20: 975982.CrossRefGoogle ScholarPubMed
23. Brant-Zawadzki, M, Badami, JP, Mills, CM, et al. Primary intracranial tumor imaging: a comparison of magnetic resonance and CT. Radiology 1984; 150: 435440.CrossRefGoogle ScholarPubMed
24. Brant-Zawadzki, M, Berry, I, Osaki, L, et al. Gd-DTPA in clinical MR of the brain. 1. Intraaxial lesions. Am J Neuroradiol 1986; 7: 781788.Google Scholar
25. Kucharczyk, W, Brant-Zawadzki M, Sobel, D, et al. Central nervous system tumors in children: detection by magnetic resonance imaging. Radiology 1985; 155: 131136.CrossRefGoogle ScholarPubMed
26. Bashir, R, Hochberg, F, Oot, R.Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 1988; 23: 2730.Google ScholarPubMed
27. Hochberg, FH, Pruitt, A.Assumptions in the radiotherapy of glioblastoma. Neurology 1980; 30: 907911.CrossRefGoogle ScholarPubMed
28. Wallner, KE, Galicich, JH, Krol, G, et al. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiât Oncol Biol Phys 1989; 16: 14051409.CrossRefGoogle ScholarPubMed
29. Black, KL, Hawkins, RA, Kim, KT, et al. Use of thallium-201 SPECT to quantitate malignancy grade of gliomas. J Neurosurg 1989; 71:342346.CrossRefGoogle ScholarPubMed
30. Derlon, JM, Bourdet, C, Bustany, P, et al. (“C)L-methionine uptake in gliomas. Neurosurgery 1989; 25: 720728.CrossRefGoogle Scholar
31. Kaplan, WD, Takvorian, T, Morris, JH, et al. Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med 1987; 28: 4752.Google ScholarPubMed
32. Lilja, A, Lundquist, H, Olsson, Y, et al. Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and the treatment-induced brain lesions. Acta Radiol 1989; 30: 121128.CrossRefGoogle ScholarPubMed
33. Mountz, JM, Stafford-Schuck K, McKeever, PE, et al. Thallium-201 tumor/cardiac ratio estimation of residual astrocytoma. J Neurosurg 1988; 68: 705709.CrossRefGoogle ScholarPubMed
34. Patronas, NJ, Di Chio G, Kufta, C, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 1985; 62: 816822.CrossRefGoogle ScholarPubMed
35. Sutton, LN, Lenkinski, RE, Cohen, BH, et al. Localized 31P magnetic resonance spectroscopy of large pediatric brain tumors. J Neurosurg 1990; 72: 6570.CrossRefGoogle ScholarPubMed
36. Hoshino, T.A commentary on the biology and growth kinetics of low-grade and high-grade gliomas. J Neurosurg 1984; 61: 895900.CrossRefGoogle ScholarPubMed
37. Hoshino, T, Barker, M.Wilson, CB, et al. Cell kinetics of human gliomas. J Neurosurg 1972; 37: 1526.CrossRefGoogle ScholarPubMed
38. Hoshino, T, Wilson, CB.Cell kinetic analysis of human malignant brain tumors (gliomas). Cancer 1979; 44: 956963.Google ScholarPubMed
39. Gratzner, HG.Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 1982; 218: 474476.Google ScholarPubMed
40. Nagashima, T, DeArmond, SJ, Murovic, J, et al. Immunocyto-chemical demonstration of S-phase cells by anti-bromodeoxyuri-dine monoclonal antibody in human brain tumor tissues. Acta Neuropathol (Berl) 1985; 67: 155159.CrossRefGoogle Scholar
41. Germano, IM, Ito, M, Cho, KG, et al. Correlation of histopathological features and proliferative potential of gliomas. J Neurosurg 1989; 70: 701706.Google ScholarPubMed