Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T01:43:04.341Z Has data issue: false hasContentIssue false

Corpus Callosum Volume and Interhemispheric Transfer in Multiple Sclerosis

Published online by Cambridge University Press:  02 December 2014

L. N. Brown*
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Y. Zhang
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
J. R. Mitchell
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Diagnostic Imaging, University of Calgary, Calgary, Alberta, Canada
R. Zabad
Affiliation:
Department of Neurological Sciences, University of Nebraska Medical Centre, Omaha, Nebraska, USA
L. M. Metz
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
*
Department of Clinical Neurosciences, Foothills Medical Centre, 1104, 1403-29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

The corpus callosum (CC) is frequently compromised in patients with multiple sclerosis (MS). Structural and functional measurements of the CC may be useful to monitor the progression of the disease. The aim of this pilot study was to determine if bimanual tactile temporal thresholds correlates with CC volume. A tactile temporal threshold is the longest temporal interval that separates the onsets of two tactile stimuli when they are judged by the observer as simultaneous. Judgments to bimanual stimulations require interhemispheric transfer via the CC.

Methods:

Thresholds were examined in MS patients and matched controls. Magnetic resonance (MR) images were acquired on a 3T MR system within 48 hours of clinical assessment and measurement of thresholds.

Results:

Corpus callosum volume was assessed by using a semiautomatic livewire algorithm. The CC volume was smaller (by 21% on average, p < 0.01) and thresholds were higher (by 49% on average, p < 0.03) in MS patients when compared to controls. A significant correlation (r = -0.66, p = 0.01) between CC volume and thresholds emerged for the MS patients.

Conclusion:

Measuring treatment benefits of neuroprotective and repair therapies is a well recognized challenge in MS research. The overall findings of this study suggest that these measurements, which involve the transfer of information interhemispherically via the CC, may be promising outcome measures that warrant further scientific exploration to develop a model to measure recovery.

Résumé:

RÉSUMÉ:Contexte:

Le corps calleux (CC) est souvent impliqué dans le processus pathologique chez les patients atteints de sclérose en plaques (SP). Des mesures structurales et fonctionnelles du CC peuvent étre utiles pour surveiller la progression de la maladie.

Objectif:

Le but de cette étude exploratoire était de déterminer si les seuils temporaux de discrimination tactile bimanuelle sont corrélés au volume du CC. Un seuil temporel de discrimination tactile est l’intervalle le plus long qui sépare le début de deux stimuli tactiles quand ils sont jugés par l’observateur comme étant simultanés. Les évaluations des stimulations bimanuelles requièrent un transfert interhémisphérique via le CC.

Méthodes:

Les seuils de discrimination tactile ont été examinés chez des patients atteints de SP et des témoins appariés. Une évaluation par IRM a été effectuée au moyen d’un système IRM 3T dans les 48 heures de l’évaluation clinique et de la mesure des seuils.

Résultats:

Le volume du CC a été évalué au moyen d’un algorithme pour vidéo semi-automatisé “livewire”. Le volume du CC était plus petit (de 21% en moyenne ; p < 0,01) et les seuils étaient plus élevés (de 49% en moyenne ; p < 0,03) chez les patients atteints de SP par rapport aux témoins. Il existait une corrélation significative (r = -0,66 ; p = 0,01) entre le volume du CC et les seuils chez les patients atteints de SP.

Conclusion:

La mesure des bénéfices du traitement neuroprotecteur et réparateur est un défi bien connu en recherche sur la SP. Les observations faites au cours de cette étude suggèrent que ces mesures, qui comportent le transfert interhémisphérique d’information via le CC, pourraient aider à l’évaluation des résultats d’un traitement. Ceci méritent une exploration scientifique plus poussée afin de développer un modèle pour évaluer la récupération.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Lazeron, RHC, De Sonneville, LMJ, Scheltens, P, Polman, CH, Barkhof, F. Cognitive slowing in multiple sclerosis is strongly associated with brain volume reduction. Mult Scler. 2006;12: 7608.Google Scholar
2. Barkhof, F, Elton, M, Lindeboom, J, Tas, MW, Schmidt, WF, Hommes, OR, et al. Functional correlates of callosal atrophy in relapsing-remitting multiple sclerosis patients. A preliminary MRI study. J Neurol. 1998;245:1538.Google Scholar
3. Barnard, RO, Triggs, M. Corpus callosum in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1974;37:125964.Google Scholar
4. Dietemann, JL, Beigelman, S, Rumbach, L, Vouge, M, Tajamady, T, Faubert, C, et al. Multiple sclerosis and corpus callosum atrophy: relationship of MRI findings to clinical data. Neuroradol. 1988; 30:47880.Google Scholar
5. Evangelou, N, Esiri, M, Smith, S, Palace, J, Matthews, PM. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol. 2000; 47:3915.Google Scholar
6. Figueira, F, Santos, VS, Figueira, G, Silva, ACM. Corpus callosum index: a practical method for long-term follow-up in multiple sclerosis. Arq Neuropsiquiatr. 2007;65:9315.Google Scholar
7. Gean-Marton, AD, Vezina, LG, Marton, KI, Stimac, GK, Peyster, RG, Taveras, JM, et al. Abnormal corpus callosum: a sensitive and specific indicator of multiple sclerosis. Neuroradiol. 1991;180: 21521.Google Scholar
8. Joonmi, OH, Pelletier, D, Nelson, SJ. Corpus callosum axonal injury in multiple sclerosis measured by proton magnetic resonance spectroscopic imaging. Arch Neurol. 2004;61:10816.Google Scholar
9. Martola, J, Stawiarz, L, Fredikson, S, Hillert, J, Bergström, J, Flodmark, O, et al. Progression of non-age-related callosal brain atrophy in multiple sclerosis: a 9-year longitudinal MRI study representing four decades of disease development. J Neurol Neurosurg Psychiatry. 2007;78:37580.Google Scholar
10. Simon, JH, Holtäs, SL, Schiffer, RB, Rudick, RA, Herndon, RM, Kido, DK, et al. Corpus callosum and subcallosal periventricular lesions in multiple sclerosis: Detection with MR Radiol. 1986; 160:3637.Google Scholar
11. Pelletier, J, Suchet, L, Witjas, T, Habib, M, Guttmann, CRG, Salamon, G, et al. A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis. Arch Neurol. 2001;58:10511.Google Scholar
12. Boroojerdi, B, Hungs, M, Mull, M, Töpper, R, Noth, J. Interhemispheric inhibition in patients with multiple sclerosis. Electroencephalogr Clin Neurophysiol. 1998;109:2307.Google Scholar
13. Brown, LN, Metz, LM, Sainsbury, RS. Sensory temporal thresholds and interhemispheric transfer times in multiple sclerosis: a preliminary study of a new outcome measure. J Clin Exp Neuropsych. 2003;25:78392.Google Scholar
14. Höppner, J, Kunesch, E, Buchmann, J, Hess, A, Großmann, A, Benecke, R. Demyelination and axonal degeneration in corpus callosum assessed by analysis of transcallosally mediated inhibition in multiple sclerosis. Clin Neurophysiol. 1999;110:74856.Google Scholar
15. Larson, EB, Burnison, DS, Brown, WS. Callosal function in multiple sclerosis: Bimanual motor coordination. Cortex. 2002;38: 20114.Google Scholar
16. Manson, SC, Palace, J, Frank, JA, Matthews, PM. Loss of interhemispheric inhibition in patients with multiple sclerosis is related to corpus callosum atrophy. Exp Brain Res. 2006;174: 72833.Google Scholar
17. Pelletier, J, Habib, M, Lyon-Caen, O, Salamon, G, Poncet, M, Khalil, R. Functional and magnetic resonance imaging correlates of callosal involvement in multiple sclerosis. Arch Neurol. 1993; 50:107782.Google Scholar
18. Rao, SM, Bernardin, L, Leo, GJ, Ellington, L, Ryan, SB, Burg, LS. Cerebral disconnection in multiple sclerosis: relationship to atrophy of the corpus callosum. Arch Neurol. 1989;46:91820.Google Scholar
19. Schmierer, K, Niehaus, L, Röricht, S, Meyer, B-U. Conduction deficits of callosal fibers in early multiple sclerosis. J Neurol Neurosurg Psychiatry. 2000;68:6338.Google Scholar
20. Schnider, A, Benson, DF, Rosner, LJ. Callosal disconnection in multiple sclerosis. Neurology. 1993;43:12435.Google Scholar
21. Warlop, NP, Achten, E, Debruyne, J, Vingerhoets, G. Diffusion weighted callosal integrity reflects interhemispheric communication efficiency in multiple sclerosis. Neuropsychologia. 2008;46:225864.Google Scholar
22. Wishart, HA, Strauss, E, Hunter, M, Moll, A. Interhemispheric transfer in multiple sclerosis. J Clin Exp Neuropsychol. 1995;17:93740.Google Scholar
23. Brown, LN, Metz, LM, Eliasziw, M. Identifying reliable change in tactile temporal thresholds in multiple sclerosis: test-retest reliability. Mult Scler. 2006;12:5737.Google Scholar
24. Brown, LN, Metz, LM. Tactile temporal thresholds measure relapse-related change in multiple sclerosis: a preliminary study. Mult Scler. 2005;11:7257.Google Scholar
25. McDonald, WI, Comptson, A, Edan, G and the International Panel Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol. 2001;50:1217.Google Scholar
26. Kurtzke, JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Ann Neurol. 1983;13: 22731.Google Scholar
27. Bowers, ME, Trinh, N, Tung, GA, Crisco, JJ, Kimia, BB, Fleming, BC. Quantitative MR imaging using “LiveWire” to measure tibiofemoral articular cartilage thickness. Osteoarthritis Cartilage. 2008;16(10):116773.Google Scholar