Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T10:00:14.286Z Has data issue: false hasContentIssue false

Defining the CT Angiography ‘Spot Sign’ in Primary Intracerebral Hemorrhage

Published online by Cambridge University Press:  02 December 2014

Andrew L. Thompson*
Affiliation:
Division of Neuroradiology, Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario
Jayme C. Kosior
Affiliation:
Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary Alberta, Canada
David J. Gladstone
Affiliation:
Department of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario
Julia J. Hopyan
Affiliation:
Department of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario
Sean P. Symons
Affiliation:
Division of Neuroradiology, Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario
Francisco Romero
Affiliation:
Department of Neuroradiology, Hospital Vall d'Hebrón, Universitat Autonoma de Barcelona, Barcelona, Spain
Imanuel Dzialowski
Affiliation:
Department of Neurology, University of Dresden, Dresden, Germany
Jayanta Roy
Affiliation:
Advance Medicare & Research Institute, Kolkata, India
Andrew M. Demchuk
Affiliation:
Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary Alberta, Canada
Richard I. Aviv
Affiliation:
Division of Neuroradiology, Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario
*
Division of Neuroradiology, Department of Medical Imaging, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Purpose:

The computed tomogram angiography (CTA) ‘spot sign’ describes foci of intralesional enhancement associated with hematoma expansion in primary intracerebral hemorrhage patients. A consistent radiological definition is required for two proposed recombinant Factor VIIa trials planning patient dichotomization according to ‘spot sign’ presence or absence. We propose radiological criteria for diagnosis of the CTA ‘spot sign’ and describe different morphological patterns.

Material and Methods:

A prospective cohort of 36 consecutive patients presenting with primary intracerebral hemorrhage (ICH) were enrolled in a multicenter collaborative study, and have been included for the present analysis. Three reviewers analyzed the CTA studies in a blinded protocol. Analysis of specific ICH and ‘spot sign’ features was performed including prevalence, number, size, location, morphology and Hounsfield unit density.

Results:

Twelve of thirty-six patients (33%) demonstrated a total of 19 enhancing foci consistent with the CTA ‘spot sign’. Mean maximal axial ‘spot sign’ dimension was 3.7±2.2 mm and mean density was 216±57.7 HU. No significant differences in age or blood pressure (p=0.7), glucose (p=0.9), INR/PTT (p=0.3 and 0.4) or hematoma location (p=0.3) were demonstrated between patients with or without the ‘spot sign’. Consensus definition and classification criteria for the CTA ‘spot sign’ are proposed.

Conclusion:

The ‘spot sign’ is defined as spot-like and/or serpiginous foci of enhancement, within the margin of a parenchymal hematoma without connection to outside vessels. The ‘spot sign’ is greater than 1.5 mm in maximal dimension and has a Hounsfield unit density at least double that of background hematoma density.

Résumé:

RÉSUMÉ:Objectif :

Le spot sign à l’angiographie par tomodensitométrie (angio CT) désigne des foyers intralésionnels de rehaussement associés à une expansion de l’hématome chez les patients qui présentent une hémorragie intracérébrale primaire. Il faudra utiliser une définition radiologique fiable dans le cadre de deux essais cliniques portant sur le facteur VIIa recombinant, dans lesquels les patients seront classifiés selon la présence ou l’absence du spot sign. Nous proposons des critères radiologiques pour le diagnostic du spot sign à l’angio CT et nous décrivons différents aspects morphologiques.

Matériel et méthodes :

Une cohort prospective composée de 36 patients consécutifs qui ont consulté pour une hémorragie intracérébrale primaire (HIP) ont été inclus dans une etude multicentre effectuée en collaboration dont nous présentons les données. Trois réviseurs ont analysé les études angio CT en double insu. L’analyse de manifestations spécifiques d’HIP et de spot sign a été effectuée, dont la prévalence, le nombre, la taille, la localisation, la morphologie et la densité en unités Hounsfield (UH).

Résultats :

Au total, 19 foyers rehaussants compatibles avec un spot sign à l’angio CT ont été observés chez douze des trentesix patients (33%). La moyenne de la dimension axiale maximale du spot sign était de 3,7 ± 2,2 mm et la densité moyenne de 216 ± 57,7 UH. Aucune différence significative quant à l’âge ou à la pression sanguine (p = 0,7), la glycémie (p = 0,9), l’INR/PTT (p = 0,3 et 0,4) ou la localisation de l’hématome (p = 0,3) n’a été observée entre les patients présentant ou non le spot sign. Nous proposons une définition de consensus et des critères de classification du spot sign à l’angio CT.

Conclusion :

Le spot sign est défini comme étant des foyers de rehaussement punctiformes et/ou serpigineux à l’intérieur des marges d’un hématome parenchymateux, sans connexion aux vaisseaux extérieurs. Le spot sign a une dimension maximale de plus de 1,5 mm et une densité UH qui est au moins deux fois celle de l’hématome dans lequel il est situé.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2009

References

1. Broderick, JP, Adams, HP Jr, Barsan, W, Feinberg, W, Feldmann, E, Grotta, J, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 1999; 30:90515.Google Scholar
2. Broderick, JP, Brott, T, Tomsick, T, Huster, G, Miller, R. The risk of subarachnoid and intracerebral hemorrhages in blacks as compared with whites. N Engl J Med. 1992; 326:7336.Google Scholar
3. Kazui, S, Naritomi, H, Yamamoto, H, Sawada, T, Yamaguchi, T. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke. 1996; 27:17837.Google Scholar
4. Kazui, S, Minematsu, K, Yamamoto, H, Sawada, T, Yamaguchi, T. Predisposing factors to enlargement of spontaneous intracerebral hematoma. Stroke. 1997; 28:23705.Google Scholar
5. Wada, R, Aviv, RI, Fox, AJ, Sahlas, DJ, Gladstone, DJ, Tomlinson, G, et al. CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke. 2007; 38:125762.Google Scholar
6. Goldstein, JN, Fazen, LE, Snider, R, Schwab, K, Greenberg, SM, Smith, EE, et al. Contrast extravasation on CT angiography predicts hematoma expansion in intracerebral hemorrhage. Neurology. 2007; 68:88994.Google Scholar
7. Gazzola, S, Aviv, RI, Gladstone, DJ, Mallia, G, Li, V, Fox, AJ, et al. Vascular and non-vascular mimics of the CT angiography “spot sign” in patients with secondary intracerebral hemorrhage. Stroke. 2008; 39(4):117783.CrossRefGoogle Scholar
8. Mayer, SA, Brun, NC, Begtrup, K, Broderick, J, Davis, S, Diringer, MN, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005; 352:77785.CrossRefGoogle ScholarPubMed
9. Fisher, CM. The arterial lesions underlying lacunes. Acta Neuropathol (Berl). 1968; 12:115.Google Scholar
10. Lammie, GA. Hypertensive cerebral small vessel disease and stroke. Brain Pathol. 2002; 12:35870.Google Scholar
11. Lammie, GA, Lindley, R, Keir, S, Wiggam, MI. Stress-related primary intracerebral hemorrhage: autopsy clues to underlying mechanism. Stroke. 2000; 31:14268.Google Scholar
12. Sutherland, GR, Auer, RN. Primary intracerebral hemorrhage. J Clin Neurosci. 2006; 13:51117.Google Scholar
13. Fisher, CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol. 1971; 30:53650.Google Scholar
14. Cole, FM, Yates, PO. The occurrence and significance of intracerebral micro-aneurysms. J Pathol Bacteriol. 1967; 93: 393411.Google Scholar
15. Cole, FM, Yates, P. Intracerebral microaneurysms and small cerebrovascular lesions. Brain. 1967; 90:75968.Google Scholar
16. Green, F. Miliary aneurysms in the brain. J Pathol Bacteriol. 1930; 33:717.CrossRefGoogle Scholar
17. Matuoka, S. Histopathological studies on the blood vessels in apoplexia. Cerebri. Proc. First International Congress of Neuropathology, Rome 1952; 3:222.Google Scholar
18. Fisher, CM. Cerebral miliary aneurysms in hypertension. Am J Pathol. 1972; 66:31330.Google Scholar
19. Charcot, JM Bouchard, C. Nouvelle recherches sur la pathogenie de l’hemorrhagie cerebrale. Arch Physiol Normale Pathol. 1868; 1:6435.Google Scholar
20. Fisher, CM. Hypertensive cerebral hemorrhage. Demonstration of the source of bleeding. J Neuropathol Exp Neurol. 2003; 62: 1047.Google Scholar