Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T06:18:13.327Z Has data issue: false hasContentIssue false

Dual Dorsal Columns: A Review

Published online by Cambridge University Press:  18 September 2015

Charles H. M. Beck*
Affiliation:
Neuropsychology Unit, Department of Psychology, University of Alberta, Edmonton, Alberta
*
Department of Psychology, Biological Sciences Bldg.University of Alberta, Edmonton, Alberta T6G2E1
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent evidence indicates that Wall (1970) may have been premature in concluding that dorsal column lesions produce no discernable sensory defects. Much of the negative evidence Wall presented to support this view is inconclusive. In addition several studies have reported significant sensory deficits in animals with severed dorsal columns. On the other hand, the literature strongly supports Wall's view that dorsal column lesions cause motor disturbances. A review of the anatomical and electrophysiological literature reveals growing evidence for the dissociation of two major subsystems relaying in the dorsal column nuclei. The possible functions of these two systems are discussed.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1976

References

REFERENCES

Applebaum, A.E., Beall, J.E., Foreman, R.D., and Willis, W.D., (1975). Organization and receptive fields of primate spinothalamic tract neurons. Journal of Neurophysiology 38, 572586.CrossRefGoogle ScholarPubMed
Bantli, H., Bloedel, J.R., and Thienprasit, P., (1975). Supraspinal interactions resulting from experimental dorsal column stimulation. Journal of Neurosurgery 42, 296300.CrossRefGoogle ScholarPubMed
Basbaum, A.I., and Hand, P.J., (1973). Projections of cervico-thoracic dorsal roots to the cunéate nucleus of the rat with observations on cellular bricks. Journal of Comparative Neurology 148, 347360.CrossRefGoogle Scholar
Beck, C., (1973). Compensation of postural control by squirrel monkeys following dorsal column lesions. Advances in Behavioral Biology 7, 421424.CrossRefGoogle Scholar
Beck, C., (in press). Forelimb performance by squirrel monkeys (Saimiri sciureus) before and after dorsal column lesions. Journal of Comparative and Physiological Psychology.Google Scholar
Beck, C.H., and Chambers, W.W., (1970). Speed, accuracy and strength of forelimb movement after unilateral pyramidotomy in rhesus monkeys. Journal of Comparative and Physiological Psychology 70, part 2, 122.CrossRefGoogle ScholarPubMed
Berkley, K.J., (1975). Different targets of different neurons in nucleus gracilis of the cat. Journal of Comparative Neurology 163, 285304.CrossRefGoogle ScholarPubMed
Blum, P., and Whitehorn, D., (1973). Wide-field neurons in the cunéate nucleus of the cat. Federation Proceedings 32, 399.Google Scholar
Boivie, J., (1974). Thalamic termination of fibers from the dorsal column nuclei and spinal cord in the macaque.Anatomical Record 178, 313.Google Scholar
Brown, A.G., (1973). Ascending and long spinal pathways: dorsal columns, spinocer-vical tract and spinothalamic tract. In “Handbook of Sensory Physiology”, volume 2, Somatosensory system edited by Iggo, A., Springer-Verlag, Berlin, pp. 315338.Google Scholar
Christiansen, J., (1966) Neurological observations of macaques with spinal cord lesions. Anatomical Record 154, 330.Google Scholar
Cook, A.W., and Browder, E.J., (1965). Function of posterior columns in man. Archives of Neurology (Chicago) 12, 7279.CrossRefGoogle ScholarPubMed
Cooke, J.D., Larson, B., O., OSCARS-SON, and Sjolund, B., (1971). Origin and termination of cuneo-cerebellar tract. Experimental Brain Research 13, 339358.CrossRefGoogle Scholar
Coulter, J.D., and Thies, R., (1971). Sensory transmission through the lemniscal pathway during movements and arousal in the cat. Federation Proceedings 30, 664.Google Scholar
Devito, J.L., Ruch, T.C., and Patton, H.D., (1964). Analysis of residual weight discriminatory ability and evoked potentials following section of dorsal columns in monkeys. Indian Journal of Physiology and Pharmacology 8, 117126.Google ScholarPubMed
Diamond, I.T., Randall, W., and Springer, L., (1964). Tactual localization in cats deprived of cortical areas SI and SII and the dorsal columns. Psychonomic Science 1, 261262.CrossRefGoogle Scholar
Dobry, P.J.K., and Casey, K.L., (1972a). Roughness discrimination in cats with dorsal column lesions. Brain Research 44, 385397.CrossRefGoogle ScholarPubMed
Dobry, P.J.K., and Casey, K.L., (1972b). Coronal somatosensory unit responses in cats with dorsal column lesions. Brain Research 44, 399416.CrossRefGoogle ScholarPubMed
Dubrovsky, B., and Garcia - Rill, E., (1973). Role of dorsal columns in sequential, motor acts requiring precise forelimb projection. Experimental Brain Research 18, 165177.CrossRefGoogle ScholarPubMed
Eidelberg, E., and Schwartz, A.S., (1971) . Experimental analysis of the extinction phenomenon in monkeys. Brain Research 94, 91108.Google ScholarPubMed
Eidelberg, E., and Woodbury, C.M., (1972) . Apparent redundancy in the somatosensory system in monkeys. Experimental Neurology 37, 573581.CrossRefGoogle ScholarPubMed
Erulkar, S.D., Sprague, J.M., Whitsel, B.L., Dogan, S., and Jan-NETTA, P.J., (1966). Organization of the vestibular projection to spinal cord of the cat. Journal of Neurophysiology 29, 626664.CrossRefGoogle ScholarPubMed
Ettlinger, G., and Kalsbeck, J.E., (1962). Changes in tactile discrimination and in visual reaching after successive and simultaneous bilateral posterior parietal ablations in the monkey. Journal of Neurology, Neurosurgery and Psychiatry 25, 256268.CrossRefGoogle ScholarPubMed
Ferraro, A., and Barrera, S.E., (1935b). Summary of clinical and anatomical findings following lesions in the dorsal column system of macacus rhesus monkeys. Association for Research in Nervous and Mental Disease 15, 371395.Google Scholar
Ferraro, A., and Barrera, S.E., (1935a). The nuclei of the posterior funiculi in macacus rhesus. Archives of Neurology and Psychiatry 33, 262275.CrossRefGoogle Scholar
Galambos, R., Norton, T.T., and Frommer, G.P., (1967). Optic tract lesions sparing pattern vision in cats. Experimental Neurology 18, 825.CrossRefGoogle ScholarPubMed
Geschwind, N., (1974). Late changes in the nervous system: an overview. In “Plasticity and Recovery of Function in the Central Nervolis System” edited by Stein, D.G., Rosen, J.J. and Butters, N., Academic Press, New York, pp. 467508.Google Scholar
Ghez, C., and Lenzi, G.L., (1971). Modulation of sensory transmission in cat lemniscal system during voluntary movement. Pfluegers Archives 323, 273278.CrossRefGoogle ScholarPubMed
Ghez, C., and Pisa, M., (1972). Inhibition of afferent transmission in cuneate nucleus during voluntary movement in the cat. Brain Research 40, 145151.CrossRefGoogle ScholarPubMed
Gilman, S., and Denny-BROWN, D., (1966). Disorders of movement and behavior following dorsal column lesions. Brain 89, 397418.CrossRefGoogle ScholarPubMed
Gordon, G., and Jukes, M.G.M., (1964a). Dual organization of the exteroceptive components of the cat’s gracile nucleus. Journal of Physiology (London) 173, 290.Google Scholar
Gordon, G., and Jukes, M.G.M., (1964b). Descending influences on the exteroceptive organizations of the cat’s gracile nucleus. Journal of Physiological (London) 173, 291319.Google Scholar
Gordon, G., and Paine, C.H., (1960). Functional organization in nucleus gracilis of the cat. Journal of Physiology (London) 153, 331349.CrossRefGoogle ScholarPubMed
Gordon, G., and Seed, W.A., (1961). An investigation of nucleus gracilis in the cat by antidromic stimulation. Journal of Physiology (London) 155, 589601.CrossRefGoogle ScholarPubMed
Graybiel, A.M., (1972). Some fiber pathways related to the posterior thalamic region in the cat. Brain, Behavior and Evolution 6, 363393.CrossRefGoogle Scholar
Groenewegen, H.J., Boesten, A.J.P., and Voogd, J., (1975). The dorsal column nuclear projections to the nucleus ven-tralis posterior lateralis thalami and the inferior olive in the cat: an auto-radiographic study. Journal of Comparative Neurology 162, 505518.CrossRefGoogle Scholar
Hand, P.J., (1966). Lumbrosacral dorsal root termination in the nucleus gracilis of the cat. Journal of Comparative Neurology 126, 137156.CrossRefGoogle Scholar
Hand, P.J., and Van WINKLE, T., (1975). Cuneothalamic projections of the cat. Anatomical Record 181, 371.Google Scholar
Hosobuchi, Y., Adams, J.E., and Weinstein, P.R., (1972). Preliminary percutaneous dorsal column stimulation prior to permanent implantation. Journal of Neurosurgery 37, 242.CrossRefGoogle ScholarPubMed
Keller, J.H., and Hand, P.J., (1970). Dorsal root projections to nucleus cuneatus of the cat. Brain Research 20, 117.CrossRefGoogle ScholarPubMed
Kitai, S.T., and Weinberg, J., (1968). Tactile discrimination study of the dorsal column-medial lemniscal system and spino-cervicothalamic tract in cat. Experimental Brain Research 6, 234246.CrossRefGoogle ScholarPubMed
Kruger, L., (1973). The Dorsal Column System of the Spinal Cord: Its Anatomy, Physiology, Phylogeny, and Sensory Function. UCLA Brain Information Service, Los Angeles, pp. 1179.Google Scholar
Kuhn, R.A., (1949). Topographical pattern of cutaneous sensibility in the dorsal column nuclei of the cat. Transactions of the American Neurological Association 74, 227230.Google Scholar
Kuypers, H.G.J.M., and Tuerk, J.D., (1964). The distribution of the cortical fibers within the nuclei cuneatus and gracilis of the cat. Journal of Anatomy 98, 143162.Google ScholarPubMed
Larson, S.J., Sances, A. Jr., Riegel, D.H., Meyer, G.A., Dallman, D.E., and Swiontek, T., (1974). Neurophysiological effects ,of dorsal column stimulation in man and monkey. Journal of Neurosurgery 41, 214223.CrossRefGoogle ScholarPubMed
Levitt, M., and Schwartzman, R., (1966). Spinal sensory tracts and two-point tactile sensitivity. Anatomical Record 54, 377.Google Scholar
Lund, R.D., and Webster, K.E., (1967). Thalamic afferents from the dorsal column nuclei. An experimental anatomical study in the rat. Journal of Comparative Neurology 130, 301312.CrossRefGoogle ScholarPubMed
Lundberg, A., and Norrsell, U., (1960). Spinal afferent pathway of the tactile placing reaction, Experientia 16, 123.CrossRefGoogle ScholarPubMed
Lynn, B., (1975). Somatosensory receptors and their CNS connections. Annual Review of Physiology 37, 105129.CrossRefGoogle ScholarPubMed
Mccomas, A.J., (1963). Responses of the rat dorsal column system to mechanical stimulation of the hindpaw. Journal of Physiology (London) 166, 435448.Google Scholar
Melzack, R., and Bridges, J.A., (1971). Dorsal column contributions to motor behavior. Experimental Neurology 33, 5368.CrossRefGoogle ScholarPubMed
Melzack, R., and Southmayd, S.E., (1974). Dorsal column contributions to anticipatory motor behavior. Experimental Neurology 42, 274281.CrossRefGoogle ScholarPubMed
Mountcastle, V.B., and Darian-SMITH, I., (1968). Neural mechanisms in somesthesia. In “Medical Physiology”, volume 2, edited by Mountcastle, V.B., Mosby, C.V., St. Louis, pp. 13721423.Google Scholar
Mountcastle, V.B., Lynch, J.C, Georgopoulos, A., Sakata, H., and Acuna, C., (1975). Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. Journal of Neurophysiology 38, 871908.CrossRefGoogle ScholarPubMed
Myers, D.A., Hostetter, G., Bourassa, C.M., and Swett, J., (1975). Dorsal columns in sensory detection. Brain Research 70, 350352.CrossRefGoogle Scholar
Nashold, B., Somjen, G., and Friedman, H., (1972). Paresthesias and E EG potentials evoked by stimulation of the dorsal funiculi in man. Experimental Neurology 36, 273287.CrossRefGoogle Scholar
Norrsell, U., (1966). The spinal afferent pathway of conditioned reflexes to cutaneous stimuli in the dog. Experimental Brain Research 2, 269282.Google ScholarPubMed
O'KEEFE, J., and Gaffan, D., (1971). Response properties of units in dorsal column nuclei of freely moving rats. Changes as a function of behavior. Brain Research 31, 374375.CrossRefGoogle Scholar
Perl, E.R., Whitlock, D.G., and Gentry, J.R., (1962). Cutaneous projection to second-order neurons of the dorsal column system. Journal of Neurophysiology 25, 337358.CrossRefGoogle ScholarPubMed
Petit, D., (1972). Postsynaptic fibers in the dorsal columns and their relay in the nucleus gracilis. Brain Research 48, 380384.CrossRefGoogle ScholarPubMed
Petit, D., and Burgess, P.P., (1968). Dorsal column projection of receptors in cat hairy skin supplied by myelinated fibers. Journal of Neurophysiology 31, 849855.CrossRefGoogle ScholarPubMed
Rinvik, E., and Walberg, F., (1975). Studies on the cerebellar projections from the main and external cunéate nuclei in the cat by means of retrograde axonal transport of horseradish peroxidase. Brain Research 95, 371381.CrossRefGoogle ScholarPubMed
Rosen, I., (1969). Localization in caudal brain stem and cervical spinal cord of neurons activated from forelimb group I afférents. Brain Research 16, 5571.CrossRefGoogle ScholarPubMed
Rosen, I. and Sjolund, B., (1973). Organization of Group I activated cells in the main and external cunéate nuclei of the cat: Identification of muscle receptors. Experimental Brain Research 16, 221237.Google Scholar
Rustioni, A., (1973). Non-primary afférents to the nucleus gracilis from the lumbar cord of the cat. Brain Research 51, 8195.CrossRefGoogle Scholar
Rustioni, A., (1974). Non-primary afférents to the cunéate nucleus in the brachial dorsal funiculus of the cat. Brain Research 75, 247259.CrossRefGoogle Scholar
Rustioni, A., and Macchi, G., (1968). Distribution of dorsal root fibers in the medualla oblongata of the cat. Journal of Comparative Neurology 134, 113126.CrossRefGoogle Scholar
Rustioni, A., and Molenaar, I., (1975). Dorsal column nuclei afférents in the lateral funiculus of the cat: distribution pattern and absence of sprouting after chronic deaf-ferentation. Experimental Brain Research 23, 112.CrossRefGoogle Scholar
Schwartz, A.S., Eidelberg, E., Marchok, P., and Azulay, A., (1972). Tactile discrimination in the monkey after section of the dorsal funiculus and lateral lemniscus. Experimental Brain Research 37, 582596.Google ScholarPubMed
Schwartzman, R.J., and Bogdonoff, M.D., (1968). Behavioral and anatomical analysis of vibration sensibility. Experimental Neurology 20, 4351.CrossRefGoogle ScholarPubMed
Schwartzman, R.J., and Bogdonoff, M.D., (1969). Proprioception and vibration sensibility discrimination in the absence of the posterior columns. Archives of Neurology (Chicago) 20, 349353.Google Scholar
Semmes, J., (1969). Protopathic and epicritic sensation: A reappraisal. In “Contributions to Clinical Neuropsychology”, edited by Benton, A.L., Aldine, Chicago, pp. 142171.Google Scholar
Semmes, J., (1973). Somesthetic effects of damage to the central nervous system. In “Handbook of Sensory Physiology,” volume 2, Somatosensory system edited by Iggo, A., Springer-Verlag, Berlin, pp. 719742.Google Scholar
Taber, E., (1961). The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of the cat. Journal of Comparative Neurology 116, 2770.CrossRefGoogle ScholarPubMed
Tapper, D.N., (1970). Behavioral evaluation of the tactile pad receptor system in hairy skin of the cat. Experimental Neurology 26, 447459.CrossRefGoogle ScholarPubMed
Towe, A.L., (1973). Somatomsensory cortex: descending influences on ascending systems. In "Handbook of Sensory Physiology", volume 2, Somatomsensory system edited by Iggo, A., Springer-Verlag, Berlin, pp. 701718.CrossRefGoogle Scholar
Uddenberg, N., (1968). Differential localization in dorsal funiculus of fibers originating from different receptors. Experimental Brain Research 4, 367376.CrossRefGoogle ScholarPubMed
Vierck, C.J. Jr., (1966). Spinal pathways mediating limb position sense. Anatomical Record 154, 437.Google Scholar
Vierck, C.J. Jr., (1973). Alterations of spatiotactile discrimination after lesions of primate spinal cord. Brain Research 58, 6979.CrossRefGoogle ScholarPubMed
Vierck, C.J. Jr., (1974). Tactile movement detection and discrimination following dorsal column lesions in monkeys. Experimental Brain Research 20, 331346.CrossRefGoogle ScholarPubMed
Vierck, C.J. Jr., Hamilton, D.M., and Thornby, J.I., (1971). Pain reactivity of monkeys after lesions to the dorsal and lateral columns of the spinal cord. Experimental Brain Research 13, 140158.CrossRefGoogle Scholar
Wall, P.D., (1970). The sensory and motor impulses travelling in the dorsal column toward cerebral cortex. Brain 93, 505524.CrossRefGoogle Scholar
Wall, P.D., and Dubner, R., (1972). Somatosensory pathways. Annual Review of Physiology 34, 315336.CrossRefGoogle ScholarPubMed
Wall, P.D., and Egger, M.D., (1971). Formation of new connexions in adult rat brains after partial deafferentation. Nature 232, 542545.CrossRefGoogle ScholarPubMed
Whitsel, B.L., Petrucell, L.M., Ha, H. and Dreyer, D.A., (1972. The resorting of spinal afférents as antecedent to the body representation in the poscentral gyrus. Brain, Behavior and Evolution 5, 303341.CrossRefGoogle Scholar
Willis, W.D., Maunz, R.D., Foreman, R.D., and Coulter, J.D., (1975). Static and dynamic responses by spinothalamic tract neurons to mechanical stimuli. Journal of Neurophysiology 38, 587600.CrossRefGoogle ScholarPubMed
Winter, D.L., (1965). N. gracilis of cat. Functional organization and corticofugal effects. Journal of Neurophysiology 28, 4870.CrossRefGoogle ScholarPubMed