Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T06:18:15.091Z Has data issue: false hasContentIssue false

Forearm P-31 Nuclear Magnetic Resonance Spectroscopy Studies in Oculopharyngeal Muscular Dystrophy

Published online by Cambridge University Press:  18 September 2015

Douglas W. Zochodne*
Affiliation:
Lasalle Building, Departments of Medicine and Physiology, Queen’s University, Kingston
Wilma J. Koopman
Affiliation:
Department of Clinical Neurological Sciences, University of Western Ontario, London
Norbert J. Witt
Affiliation:
Department of Clinical Neurological Sciences, University of Western Ontario, London
Terry Thompson
Affiliation:
Department of Radiology and Nuclear Medicine, Victoria Hospital, London
Albert A. Driedger
Affiliation:
Department of Radiology and Nuclear Medicine, Victoria Hospital, London
Dennis Gravelle
Affiliation:
Department of Radiology and Nuclear Medicine, Victoria Hospital, London
Charles F. Bolton
Affiliation:
Department of Clinical Neurological Sciences, University of Western Ontario, London
*
Lasalle Bldg., Room #206, Queen’s University, Kingston, Ontario, Canada K7L 3N6
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Five siblings with autosomal dominant oculopharyngeal muscular dystrophy (OPMD) underwent P-31 Nuclear Magnetic Resonance Spectroscopy studies of forearm flexor muscles. Mean values of PCr/(PCr + Pi) in the patients were reduced (p = 0.01) and pH elevated (p = 0.02) in resting muscle when compared to controls. During exercise PCr/(PCr + Pi) fell quickly to values less than controls (p < 0.0001) despite submaximal exercise output and developed exercise-induced acidosis which exceeded that of controls (p = 0.05). Acidosis recovered slowly despite relatively normal recovery of PCr/(PCr + Pi) following exercise. Within the patient group, however, one member had normal resting, exercise and recovery values. The studies suggest that OPMD is a more widespread disorder of striated muscle than clinically appreciated. The pattern of findings observed in OPMD differs from those identified in denervation, disuse and mitochondrial myopathy.

Type
Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1992

References

1.Taylor, EW.Progressive vagus-glossopharyngeal paralysis with ptosis: a contribution to the group of family diseases. J Nerv Ment Dis 1915; 42: 129139.CrossRefGoogle Scholar
2.Barbeau, A.The syndrome of hereditary late onset ptosis and dysphagia in French Canada. In: Kuhn, E, ed. Progressive Muscular Dystrophy: Myotonia, Myasthenia. Berlin: Springer, Verlag 1966: 102109.Google Scholar
3.Fried, K, Arlozorov, A, Spira, R.Autosomal recessive oculopharyngeal muscular dystrophy. J Med Genet 1975; 12: 416418.CrossRefGoogle ScholarPubMed
4.Julien, J, Vital, C, Vallat, JM, Vallat, M, Le Blanc, M.Oculopharyngeal muscular dystrophy. A case with abnormal mitochondria and ‘fingerprint’ inclusions. J Neurol Sci 1974; 21: 165169.CrossRefGoogle ScholarPubMed
5.Morgan-Hughes, JA, Mair, WGP.Atypical muscle mitochondria in oculoskeletal myopathy. Brain 1973; 96: 215224.CrossRefGoogle ScholarPubMed
6.Pratt, MF, Meyers, PK.Oculopharyngeal muscular dystrophy: recent ultrastructural evidence for mitochondrial abnormalities. Laryngoscope 1986; 96: 368373.CrossRefGoogle ScholarPubMed
7.Zochodne, DW, Thompson, RT, Driedger, AA, et al. Metabolic changes in human muscle denervation: topical 31-P NMR spectroscopy studies. Mag Res Med 1988; 7: 373383.CrossRefGoogle Scholar
8.Arnold, DL, Taylor, DJ, Radda, GK.Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 1985; 18: 189196.CrossRefGoogle ScholarPubMed
9.Taylor, DJ, Bore, PJ, Styles, P, Gadian, DG, Radda, GK.Bioenergetics of intact human muscle. A 31-P nuclear magnetic resonance study. Mol Biol Med 1983; 1: 7794.Google Scholar
10.Wilkie, DR, Dawson, MJ, Edwards, RHT, Gordon, RE, Shaw, D.31-P NMR studies of resting muscle in normal human subjects. In: Pollack, G, Sugi, H, eds. Second Symposium on Cross-bridge Mechanisms in Muscle Contraction. Plenum NY, 1984; 333346.CrossRefGoogle Scholar
11.Victor, M, Hayes, R, Adams, RD.Oculopharyngeal muscular dystrophy. N Engl J Med 1962; 267: 12671272.CrossRefGoogle ScholarPubMed
12.Murphy, SF, Drachman, DB.The oculopharyngeal syndrome. JAMA 1968; 203: 10031008.CrossRefGoogle ScholarPubMed
13.Blumbergs, PC, Chin, D, Burrow, D, Burns, RJ, Rice, JP.Oculopharyngeal dystrophy: clinicopathological study of an Australian family. Clin Exp Neurol 1983; 19: 102109.Google ScholarPubMed
14.Duranceau, CA, Letendre, J, Clermont, RJ, Levesque, H, Barbeau, A.Oropharyngeal dysphagia in patients with oculopharyngeal muscular dystrophy. Can J Surg 1978; 21: 326329.Google ScholarPubMed
15.Isenberg, DA, Kahn, P.Familial late onset oculopharyngeal muscular dystrophy. Postgrad Med J 1981; 57: 4143.CrossRefGoogle ScholarPubMed
16.Coquet, M, Vallat, JM, Vital, C, et al. Nuclear inclusions in oculopharyngeal dystrophy. An ultrastructural study of six cases. J Neurol Sci 1983; 60: 151156.CrossRefGoogle ScholarPubMed
17.Smith, TW, Chad, D.Intranuclear inclusions in oculopharyngeal dystrophy. Muscle Nerve 1984; 7: 339340.Google ScholarPubMed
18.Tome, FMS, Fardeau, M.Nuclear inclusions in oculopharngeal dystrophy. Acta Neuropathol (Berl) 1980; 49: 8587.CrossRefGoogle Scholar
19.Little, BW, Perl, DP.Oculopharyngeal muscular dystrophy. J Neurol Sci 1982; 53: 145148.CrossRefGoogle ScholarPubMed
20.Fukuhara, N, Kumamoto, T, Tsubaki, T, Mayuzmi, T, Nitta, H.Oculopharyngeal muscular dystrophy and distal myopathy. Acta Neurol Scand 1982; 65: 458467.CrossRefGoogle ScholarPubMed
21.Vita, G, Dattola, R, Santoro, M, Messina, C.Familial oculopharyngeal muscular dystrophy with distal spread. J Neurol 1983; 230: 5764.CrossRefGoogle ScholarPubMed
22.Edwards, RHT, Dawson, MJ, Wilkie, DR, Gordon, RE, Shaw, D.Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet 1982; 1: 725730.CrossRefGoogle ScholarPubMed
23.Edwards, RHT, Griffiths, RD, Cady, EB.Topical magnetic resonance for the study of muscle metabolism in human myopathy. Clin Physiol 1985; 5:93109.CrossRefGoogle Scholar
24.Griffiths, RD, Cady, EB, Edwards, RHT, Wilkie, DR.Muscle energy metabolism in Duchenne dystrophy studied by 31-P-NMR: controlled trials show no effect of allopurinol or ribose. Muscle Nerve 1985; 8:760767.CrossRefGoogle ScholarPubMed
25.Younkin, DP, Berman, P, Sladky, J, et al. 31-PNMR studies in Duchenne muscular dystrophy: age related metabolic changes. Neurology 1987; 37: 165169.CrossRefGoogle Scholar
26.Argov, Z, Bank, WJ, Maris, J, Peterson, P, Chance, B.Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology 1987; 37: 257262.CrossRefGoogle ScholarPubMed
27.Gadian, D, Radda, G, Ross, B, et al. Examination of a myopathy by phosphorus nuclear magnetic resonance. Lancet 1981; 2: 774775.CrossRefGoogle ScholarPubMed
28.Hayes, DJ, Hilton-Jones, D, Arnold, DL, et al. A mitochondrial encephalomyopathy. A combined 31-P magnetic resonance and biochemical investigation. J Neurol Sci 1985; 71: 105118.Google Scholar
29.Zochodne, DW, Thompson, RT, Driedger, AA, et al. Topical 31-P NMR spectroscopy exercise studies in mild human forearm denervation. Can J Neurol Sci 1986; 13: 173.Google Scholar
30.Bessman, SP, Carpenter, CL.The creatine-creatine phosphate energy shuttle. Ann Rev Biochem 1985; 54: 831862.CrossRefGoogle ScholarPubMed
31.Chance, B.Applications of 31-P NMR to clinical biochemistry. Ann NY Acad Sci 1984; 428: 318332.CrossRefGoogle Scholar
32.Edstrom, L, Hultman, E, Sahlin, K, Sjoholm, H.The contents of highenergy phosphates in different fibre types in skeletal muscles from rat, guinea-pig and man. J Physiol 1982; 332: 4758.CrossRefGoogle ScholarPubMed
33.Johnson, MA, Polgar, J, Weightman, D, Appleton, D.Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 1973; 18: 111129.CrossRefGoogle ScholarPubMed
34.Tome, FMS, Fardeau, M.Ocular myopathies. In: Engel, AG, Banker, BQ, eds. Myology. New York: McGraw-Hill 1986; 13271347.Google Scholar
35.Moon, RB, Richards, JH.Determination of intracellular pH by 31-P magnetic resonance. J Biol Chem 1973; 248: 72767278.CrossRefGoogle Scholar
36.Arnold, DL, Matthews, PM, Radda, GK.Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31-P NMR. Mag Res Med 1984; 1:307315.CrossRefGoogle Scholar
37.Newman, RJ, Bore, PJ, Chan, L, et al. Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy. Br Med J 1982; 284: 10721074.CrossRefGoogle ScholarPubMed
38.Hahn, AF, Thompson, RT, Gravelle, D, Koopman, WJ.Exercise intolerance and myoglobinuria in Becker’s muscular dystrophy. Can J Neurol Sci 1989; 16:238.Google Scholar
39.Probst, A, Tackmann, W, Stoeckli, HR, Jerusalem, F, Ulrich, J.Evidence for a chronic axonal atrophy in oculopharyngeal ‘muscular dystrophy’. Acta Neuropathol (Berl) 1982; 57: 209216.CrossRefGoogle ScholarPubMed
40.Schmitt, HP, Krause, KH.An autopsy study of a familial oculopharyngeal muscular dystrophy (OPMD) with distal spread and neurogenic involvement. Muscle Nerve 1981; 4: 296305.CrossRefGoogle ScholarPubMed
41.Arnold, DL, Radda, GK, Bore, PJ, Styles, P, Taylor, DJ.Excessive intracellular acidosis of skeletal muscle on exercise in a patient with a post-viral exhaustion/fatigue syndrome. Lancet 1984; 1: 13671369.CrossRefGoogle Scholar