Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T05:04:24.983Z Has data issue: false hasContentIssue false

Founder Mutation for a-sarcoglycan-LGMD2D in a Magdalen Islands Acadian Cluster

Published online by Cambridge University Press:  18 February 2016

M. Tétreault*
Affiliation:
Laboratoire de neurogénétique de la motricité, Centre d'excellence en Neuromique de l'Université de Montréal, CRCHUM, CHU-Sainte-Justine, Montreal Department of Molecular Neurogenetics, Montreal Neurological Institute, CHU-Sainte-Justine, Montreal
M. Srour
Affiliation:
Laboratoire de neurogénétique de la motricité, Centre d'excellence en Neuromique de l'Université de Montréal, CRCHUM, CHU-Sainte-Justine, Montreal
J. Allyson
Affiliation:
Département de pathologie, CHU-Sainte-Justine, Montreal Département des sciences neurologiques, CHAUQ - Hôpital de l'Enfant-Jésus, Université Laval, Québec, QC, Canada
I. Thiffault
Affiliation:
Laboratoire de neurogénétique de la motricité, Centre d'excellence en Neuromique de l'Université de Montréal, CRCHUM, CHU-Sainte-Justine, Montreal
L. Loisel
Affiliation:
Laboratoire de neurogénétique de la motricité, Centre d'excellence en Neuromique de l'Université de Montréal, CRCHUM, CHU-Sainte-Justine, Montreal
Y. Robitaille
Affiliation:
Laboratoire de neurogénétique de la motricité, Centre d'excellence en Neuromique de l'Université de Montréal, CRCHUM, CHU-Sainte-Justine, Montreal
JP. Bouchard
Affiliation:
Laboratoire de neurogénétique de la motricité, Centre d'excellence en Neuromique de l'Université de Montréal, CRCHUM, CHU-Sainte-Justine, Montreal
B. Brais
Affiliation:
Laboratoire de neurogénétique de la motricité, Centre d'excellence en Neuromique de l'Université de Montréal, CRCHUM, CHU-Sainte-Justine, Montreal
*
Laboratoire de neurogénétique, M4211-L3, Hôpital Notre-Dame-CHUM, 1560 Sherbrooke Est, Montreal, Quebec, H2L 4M1, Canada
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

We have recruited a group of four living and reviewed the records of six deceased distantly related French-Canadians of Acadian descent affected by a childhood-onset form of recessive limb-girdle muscular dystrophy (LGMD). All cases originate from the small archipelago of the Magdalen Islands (population: 13,000) isolated in the Gulf of St-Lawrence.

Methods:

Based on the likely sharing of the same founder mutation we completed a 319K SNPs genome-wide scan to identify the disease locus and then screen candidate genes in this region.

Results:

All patients had normal initial motor milestones. They presented with limb girdle weakness at the average age of seven years (5-11). Progressive weakness led to loss of ambulation at a wide range of ages (10-39). Patients also developed macroglossia, large calves and mild to moderate contractures, hyperlordosis and decreased pulmonary function. Creatine kinase levels were elevated (1,800-10,000 U/L) in the first decades, but decreased with progression of disease. Homozygosity mapping uncovered a shared chromosomal region of 6.33Mb. The alpha sarcoglycan (SGCA) gene, mutated in LGMD2D, lay in this candidate interval. Sequencing of all SGCA exons uncovered a shared homozygous missense mutation (c.229C>T, p.R77C), the most common SGCA mutation internationally reported. Using demographic data, we estimated a high carrier rate of 1/22.

Conclusion:

The p.R77C mutation has also been observed in many populations, including in France and Spain (Basques). This corresponds to the first reported recessive founder disease for the Magdalen Islands, an archipelago settled in the XlXth century, largely by Acadian immigrants.

Type
Original Article
Copyright
Copyright © Canadian Neurological Sciences Federation 2011

References

1.Straub, V, Bushby, K.The childhood limb-girdle muscular dystrophies. Semin Pediatr Neurol. 2006 Jun;13(2):104–14.CrossRefGoogle ScholarPubMed
2.Bushby, K, Norwood, F, Straub, V.The limb-girdle muscular dystrophies-diagnostic strategies. Biochim Biophys Acta. 2007 Feb;1772(2):238–42.CrossRefGoogle ScholarPubMed
3.Rocha, CT, Hoffman, EP.Limb-girdle and congenital muscular dystrophies: current diagnostics, management, and emerging technologies. Curr Neurol Neurosci Rep. 2010 Jul;10(4):267–76.CrossRefGoogle ScholarPubMed
4.Wicklund, MP, Mendell, JR.The limb girdle muscular dystrophies: our ever-expanding knowledge. J Clin Neuromuscul Dis. 2003 Sep;5(l): 1228.CrossRefGoogle ScholarPubMed
5.Gundesli, H, Talim, B, Korkusuz, P, et al.Mutation in exon If of PLEC, leading to disruption of plectin isoform If, causes autosomal-recessive limb-girdle muscular dystrophy. Am J Hum Genet. 2010 Dec 10;87(6):834–41.CrossRefGoogle ScholarPubMed
6.Bushby, KM.Making sense of the limb-girdle muscular dystrophies. Brain. 1999 Aug;122 (Pt 8):1403–20.CrossRefGoogle ScholarPubMed
7.ainzof, M, Bushby, K.Muscle dystrophies presenting with proximal muscle weakness. In: Karpati, G, Hilton-Jones, D, Bushy, K, Griggs, RC, editors. Disorders of voluntary muscle. Cambridge: Cambridge University Press; 2010: p230–56.CrossRefGoogle Scholar
8.Sandona, D, Betto, R.Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. Expert Rev Mol Med. 2009;ll:e28.Google Scholar
9.Crosbie, RH, Lim, LE, Moore, SA, et al.Molecular and genetic characterization of sarcospan: insights into sarcoglycan-sarcospan interactions. Hum Mol Genet. 2000 Aug 12;9(13): 2019–27.CrossRefGoogle Scholar
10.Trabeisi, M, Kavian, N, Daoud, F, et al.Revised spectrum of mutations in sarcoglycanopathies. Eur J Hum Genet. 2008 Jul; 16(7):793803.CrossRefGoogle Scholar
11.Hackman, P, Vihola, A, Udd, B.[The kinase domain of titin controls muscle gene expression and protein turnover]. Duodecim. 2005; 121(12):1279–80.Google ScholarPubMed
12.Laberge, AM, Michaud, J, Richter, A, et al.Population history and its impact on medical genetics in Quebec. Clin Genet. 2005 Oct;68 (4):287301.CrossRefGoogle ScholarPubMed
13.Srour, M, Bolduc, V, Guergueltcheva, V, et al.DOK7 mutations presenting as a proximal myopathy in French Canadians. Neuromuscul Disord. 2010 Jul;20(7):453–7.CrossRefGoogle ScholarPubMed
14.Gosselin, I, Thiffault, I, Tetreault, M, et al.Founder SH3TC2 mutations are responsible for a CMT4C French-Canadians cluster. Neuromuscul Disord. 2008 Jun;18(6):483–92.CrossRefGoogle ScholarPubMed
15.Duquette, A, Roddier, K, McNabb-Baltar, J, et al.Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy. Ann Neurol. 2005 Mar;57(3):408–14.CrossRefGoogle ScholarPubMed
16.Bernard, G, Thiffault, I, Tetreault, M, et al.Tremor-ataxia with central hypomyelination (TACH) leukodystrophy maps to chromosome 10q22.3–10q23.31. Neurogenetics. 2010 Oct;ll(4):457–64.CrossRefGoogle Scholar
17.Bolduc, V, Marlow, G, Boycott, KM, et al.Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet. 2010 Feb 12;86(2):213–21.CrossRefGoogle ScholarPubMed
18.Thiffault, I, Rioux, MF,Tetreault, M, et al.Anew autosomal recessive spastic ataxia associated with frequent white matter changes maps to 2q33–34. Brain. 2006 Sep;129(Pt 9):2332–40.CrossRefGoogle Scholar
19.Tetreault, M, Duquette, A, Thiffault, I, et al.A new form of congenital muscular dystrophy with joint hyperlaxity maps to 3p23–21. Brain. 2006 Aug;129(Pt 8):2077–84.CrossRefGoogle ScholarPubMed
20.Gros-Louis, F, Dupre, N, Dion, P, et al.Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet. 2007 Jan;39(l):80–5.CrossRefGoogle ScholarPubMed