Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T20:49:39.583Z Has data issue: false hasContentIssue false

Friedreich's Ataxia 1976 — An Overview

Published online by Cambridge University Press:  18 September 2015

A. Barbeau*
Affiliation:
Clinical Research Institute of Montreal and the Hopital Hotel-Dieu, Montreal
*
Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal H2W 1R7 Quebec, Canada
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The prospective investigation of 50 cases of possible Friedreich's ataxia has permitted the clinical and biochemical delineation of the typical disease and an hypothesis on its pathogenesis. A tentative definition of the disorder could read: “Friedreich's ataxia is a progressive degenerative disease always inherited in an autosomal recessive fashion and characterized by a cardiomyopathy and a ganglioneuropathy with dying back phenomenon. It is probably secondary to a defect in the membrane transport of taurine and β -alanine and/or a defect in the regulation of pyruvate oxidation.” The existence of two pathogenetically distinct distinct entities with the same phenotype is a strong possibility.

Type
Quebec Cooperative Study of Friedreich's Ataxia
Copyright
Copyright © Canadian Neurological Sciences Federation 1976

References

REFERENCES

Barbeau, A., Inoue, N., Tsukada, Y. and Butterworth, R.F. (1975). The neuropharmacology of taurine. Life Sci., 17, 669678.CrossRefGoogle ScholarPubMed
Blass, J.P., Kark, R.A.P. and Engel, W.K. (1971). Clinical studies of a patient with pyruvate decarboxylase deficiency. Arch. Neurol., 25, 449460.CrossRefGoogle ScholarPubMed
Blass, J.P., Kark, R.A.P. and Menon, N.K. (1976). Low activities of the pyruvate and oxoglutarate dehydrogenase complexes in five patients with Freidreich’s ataxia. New Engl. J. Med., 295, 6267.CrossRefGoogle Scholar
Cavanagh, J.B. (1964). The significance of the “dying back” process in experimental and human neurological disease. Int. Rev. Exp. Path., 3, 219267.Google ScholarPubMed
Chesney, R.W., Scriver, C.R. and Mohyuddin, F. (1975). Location of mutant Β-amino acid carrier in renal epithelium. Clin. Res., 23, 650A.Google Scholar
Collis, W.J. and Engel, W.K. (1968). Glucose metabolism in five neuromuscular disorders. Neurology, 18, 915925.CrossRefGoogle ScholarPubMed
Gibson, G.E., Jope, R. and Blass, J.P. (1975). Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J., 148, 1723.CrossRefGoogle ScholarPubMed
Goldman, H. and Scriver, C.R. (1967). A transport system in mammalian kidney with preference for Β-amino compounds. Pediat. Res., 1, 212213.CrossRefGoogle Scholar
Gruener, R., Markovitz, D., Hux-Table, R. and Bressler, R. (1975). Excitability modulation by taurine: transmembrane measurements of neuromuscular transmission. J. Neurol. Sci., 24, 351360.CrossRefGoogle ScholarPubMed
Huxtable, R. and Barbeau, A. (Eds.) (1976). Taurine, Raven Press, New York, pp. 1398.Google ScholarPubMed
Huxtable, R. and Bressler, R., (1974a). Elevation of taurine in human congestive heart failure. Life Sci., 14, 13531359.CrossRefGoogle ScholarPubMed
Huxtable, R. and Bressler, R. (1974). Taurine concentrations in congestive heart failure. Science, 184, 11871188.CrossRefGoogle ScholarPubMed
Jacobsen, J.G. and Smith, L.L.H. (1968). Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev., 48, 424511.CrossRefGoogle ScholarPubMed
Jasmin, G., Solymoss, B. and Eu, H.Y. (1975). Effect of thyroparathyroidec-tomy and of a low calcium diet on the cardiomyopathy of the Syrian hamster. In: The Metabolism of Contraction, University Park Press, Baltimore (Roy, P.E. and Rona, G., Eds.), pp. 717729.Google Scholar
Johnson, J.L. (1975). Compartmentation of (U-14C) proline metabolism in the dorsal root ganglion: Contrasts with the ventral spinal cord gray and cerebral cortex. Brain Res., 96, 192196.CrossRefGoogle ScholarPubMed
Johnson, J.L. (1976). A comparative analysis of compartmentation of metabolism in the dorsal root ganglion and ventral spinal cord gray using (U-14C) glucose, (2-l4C) glucose, (6-14C) glucose, (3, 4-14C) glucose, NaH,4C03, and (2-14C) pyruvate. Brain Res., 101, 523532.CrossRefGoogle Scholar
Joiner, C.L., McArdle, B. and Thompson, R.H.S. (1950). Blood pyruvate estimations in diagnosis and treatment of polyneuritis. Brain, 73, 431452.CrossRefGoogle ScholarPubMed
Kaczmarek, L.K. and Davison, A.N. (1972). Uptake and release of taurine from rat brain slices. J. Neurochem., 19, 23552362.CrossRefGoogle ScholarPubMed
Kuriyama, K. and Nakagawa, K. (1976). Role of taurine in adrenal gland: A preventive effect on stress-induced release of catecholamines from chromaffin granules. In: Taurine, (Huxtable, R. and Barbeau, A., Eds.). Raven Press, New York, pp. 173177.Google Scholar
Lubozynski, M.F. and Roelofs, R.I. (1975). Friedreich’s ataxia. Southern Med. J., 68, 757763.CrossRefGoogle ScholarPubMed
Pasantes-Morales, H., Salceda, R. and Lopez Colombe, A.M. (1976). The role of taurine in retina: Factors affecting its release. In: Taurine, (Huxtable, R. and Barbeau, A., Eds.), Raven press, New York, pp. 191200.Google Scholar
Perry, T.L., Berry, K., Hansen, S., Diamond, S. and Mok, C. (1971). Regional distribution of amino acids in human brain obtained at autopsy. J. Neurochem., 18, 513519.CrossRefGoogle ScholarPubMed
Perry, T.L., MaClean, J., Perry, T.L. (jr.) and Hansen, S. (1976). Effect of 3-acetyl pyridine on putative neurotransmitter amino acids in rat cerebellum. Brain Res., 109, 632635.CrossRefGoogle Scholar
Powell, L.W., Hemingway, E., Billing, B.H. and Sherlock, S. (1967). Idiopathic unconjugated hyperbilirubinemia (Gilbert’s syndrome) – A study of 42 families. New Engl. J. Med., 23, 11081112.CrossRefGoogle Scholar
Read, W.O. and Welty, J.D. (1976). Effect of taurine on the action potential of guinea pig capillary muscle. In: Taurine, (Huxtable, R. and Barbeau, A.. Eds.), Raven Press, New York, pp. 173177.Google Scholar
Reynolds, S.F. and Blass, J.P. (1976). A possible mechanism for selective cerebellar damage in partial pyruvate dehydrogenase deficiency. Neurology, 26,625628.CrossRefGoogle ScholarPubMed
Scriver, C.R. and Rosenberg, L.E. (1973). Amino acid metabolism and its disorders. In: Major Problems in Clinical Pediatrics, Vol. 10. W. B. Saunders Co., Philadelphia, pp. 1491.Google Scholar
Spaeth, D.G. and Schneider, D.L. (1974). Taurine synthesis, concentration and bile salt conjugation in rat, guinea pig and rabbit. Proc. Soc. Exp. Biol. Med.. 147 855858.CrossRefGoogle ScholarPubMed
Tyrer, J.H. (1975). Friedreich’s ataxia. In: Handbook of Neurology. Vol. 22. (Vinken, and Bruyn, , eds.), pp. 319364.Google Scholar
Wieland, O., Helmreich, E. and Holzer, H. (Eds.) (1972). Metabolic Interconversion of Enzymes. Springer Verlag, Heidelberg.Google Scholar