Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T19:45:24.113Z Has data issue: false hasContentIssue false

Functional MRI Applications in Epilepsy Surgery

Published online by Cambridge University Press:  02 December 2014

Craig A. Beers
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences and Radiology, University of Calgary, Calgary, Alberta, Canada
Paolo Federico*
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences and Radiology, University of Calgary, Calgary, Alberta, Canada
*
Departments of Clinical Neurosciences and Radiology, University of Calgary, Room C1214a, Foothills Medical Centre, 1403 29th Street NW, Calgary, Alberta, T2N 2T9, Canada. Email: pfederic@ucalgary.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique that has grown rapidly in popularity over the past decade. It is already prevalent in psychology, cognitive and basic neuroscience research and is being used increasingly as a tool for clinical decision-making in epilepsy. It has been used to determine language location and laterality in patients, sometimes eliminating the need for invasive tests. fMRI can been used pre-surgically to guide resection margins, preserving eloquent cortex. Other fMRI paradigms assessing memory, visual and somatosensory systems have limited clinical applications currently, but show great promise. Simultaneous recording of electroencephalogram (EEG) and fMRI has also provided insights into the networks underlying seizure generation and is increasingly being used in epilepsy centres. In this review, we present some of the current clinical applications for fMRI in the pre-surgical assessment of epilepsy patients, and examine a number of new techniques that may soon become clinically relevant.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2012

References

1Noachtar, S, Borggraefe, I.Epilepsy surgery: a critical review. Epilepsy Behav. 2009;15(1):6672.CrossRefGoogle ScholarPubMed
2French, JA.Refractory epilepsy: clinical overview. Epilepsia. 2007; 48 Suppl 1:37.Google Scholar
3Spencer, S, Huh, L.Outcomes of epilepsy surgery in adults and children. Lancet Neurol. 2008;7(6):52537.CrossRefGoogle ScholarPubMed
4Foldvary, N, Bingaman, WE, Wyllie, E.Surgical treatment of epilepsy. Neurol Clin. 2001;19(2):491515.CrossRefGoogle ScholarPubMed
5Placantonakis, DG, Schwartz, TH.Localization in epilepsy. Neurol Clin. 2009;27(4):101530.Google Scholar
6Cascino, GD.Video-EEG monitoring in adults. Epilepsia. 2002;43 Suppl 3:8093.Google Scholar
7Schauble, B, Cascino, GD.Advances in neuroimaging: management of partial epileptic syndromes. Neurosurg Rev. 2003;26(4):23346; discussion 247-8.Google Scholar
8Duncan, JS.Imaging and epilepsy. Brain. 1997;120 (Pt 2):33977.Google Scholar
9Maehara, T.Neuroimaging of epilepsy. Neuropathology. 2007;27(6):58593.CrossRefGoogle ScholarPubMed
10Matsuda, H, Matsuda, K, Nakamura, F, et al.Contribution of subtraction ictal SPECT coregistered to MRI to epilepsy surgery: a multicenter study. Ann Nucl Med. 2009;23(3):28391.Google Scholar
11Richardson, M.Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin Neurophysiol. 2010;121(8):115375.Google Scholar
12Richardson, MP.Epilepsy and surgical mapping. Br Med Bull. 2003;65:17992.CrossRefGoogle ScholarPubMed
13Lee, BI, Markand, ON, Siddiqui, AR, et al.Single photon emission computed tomography (SPECT) brain imaging using N, N, N’-trimethyl-N’-(2 hydroxy-3-methyl-5-123I-iodobenzyl)-1,3-propanediamine 2 HCl (HIPDM): intractable complex partial seizures. Neurology. 1986;36(11):14717.CrossRefGoogle Scholar
14Launes, J, Iivanainen, M, Salmi, T, Nikkinen, P, Lindroth, L, Liewendahl, K.Interictal brain 99Tc-HM-PAO SPECT hypoperfusion in patients with unstable partial epilepsy and normal CT. Acta Neurol Scand. 1992;86(6):55862.Google Scholar
15Ryvlin, P, Garcia-Larrea, L, Philippon, B, et al.High signal intensity on T2-weighted MRI correlates with hypoperfusion in temporal lobe epilepsy. Epilepsia. 1992;33(1):2835.Google Scholar
16Knowlton, RC.The role of FDG-PET, ictal SPECT, and MEG in the epilepsy surgery evaluation. Epilepsy Behav. 2006;8(1):91101.CrossRefGoogle ScholarPubMed
17Ray, A, Bowyer, SM.Clinical applications of magnetoencephalography in epilepsy. Ann Indian Acad Neurol. 2010;13 (1):1422.Google Scholar
18Stufflebeam, SM, Tanaka, N, Ahlfors, SP.Clinical applications of magnetoencephalography. Hum Brain Mapp. 2009;30(6):181323.Google Scholar
19Stufflebeam, SM.Clinical magnetoencephalography for neurosurgery. Neurosurg Clin N Am. 2011;22(2):15367, vii-viii.CrossRefGoogle ScholarPubMed
20Najib, U, Bashir, S, Edwards, D, Rotenberg, A, Pascual-Leone, A.Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am. 2011;22(2):23351, ix.Google Scholar
21Groening, K, Brodbeck, V, Moeller, F, et al.Combination of EEG-fMRI and EEG source analysis improves interpretation of spike-associated activation networks in paediatric pharmacoresistant focal epilepsies. Neuroimage. 2009;46(3):82733.Google Scholar
22LeVan, P, Tyvaert, L, Moeller, F, Gotman, J.Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. Neuroimage. 2010;49(1): 36678.Google Scholar
23Tyvaert, L, Hawco, C, Kobayashi, E, LeVan, P, Dubeau, F, Gotman, J.Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain. 2008;131(Pt 8):204260.Google Scholar
24Siegel, AM.Presurgical evaluation and surgical treatment of medically refractory epilepsy. Neurosurg Rev. 2004;27(1):118; discussion 19-21.Google Scholar
25Curatolo, JM, Macdonell, RA, Berkovic, SF, Fabinyi, GC.Intraoperative monitoring to preserve central visual fields during occipital corticectomy for epilepsy. J Clin Neurosci. 2000;7(3):2347.Google Scholar
26Ogawa, S, Lee, TM, Nayak, AS, Glynn, P.Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14(1):6878.CrossRefGoogle Scholar
27Benar, CG, Gross, DW, Wang, Y, et al.The BOLD response to interictal epileptiform discharges. Neuroimage. 2002;17(3): 118292.Google Scholar
28Keogh, BP, Cordes, D.Quantitative approaches to functional MRI: applications in epilepsy. Epilepsia. 2007;48 Suppl 4:2736.Google Scholar
29Sullivan, JE, 3rd, Detre, JA.Functional magnetic resonance imaging in the treatment of epilepsy. Curr Neurol Neurosci Rep. 2005;5(4):299306.Google Scholar
30Logothetis, NK.The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci. 2003;23(10): 396371.Google Scholar
31Menon, RS.Imaging function in the working brain with fMRI. Curr Opin Neurobiol. 2001;11(5):6306.CrossRefGoogle ScholarPubMed
32Malonek, D, Grinvald, A.Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996;272 (5261):5514.Google Scholar
33Haller, S, Bartsch, AJ.Pitfalls in FMRI. Eur Radiol. 2009;19(11):2689706.CrossRefGoogle ScholarPubMed
34Bookheimer, S.Pre-surgical language mapping with functional magnetic resonance imaging. Neuropsychol Rev. 2007;17(2):14555.CrossRefGoogle ScholarPubMed
35Swanson, SJ, Sabsevitz, DS, Hammeke, TA, Binder, JR.Functional magnetic resonance imaging of language in epilepsy. Neuropsychol Rev. 2007;17(4):491504.Google Scholar
36Aldenkamp, AP, Boon, PA, Deblaere, K, et al.Usefulness of language and memory testing during intracarotid amobarbital testing: observations from an fMRI study. Acta Neurol Scand. 2003;108(3):14752.CrossRefGoogle ScholarPubMed
37Arora, J, Pugh, K, Westerveld, M, Spencer, S, Spencer, DD, Todd Constable, R.Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia. 2009;50(10):222541.Google Scholar
38Binder, JR, Swanson, SJ, Sabsevitz, DS, Hammeke, TA, Raghavan, M, Mueller, WM.A comparison of two fMRI methods for predicting verbal memory decline after left temporal lobectomy: language lateralization versus hippocampal activation asymmetry. Epilepsia. 2010;51(4):61826.Google Scholar
39Szaflarski, JP, Holland, SK, Jacola, LM, Lindsell, C, Privitera, MD, Szaflarski, M.Comprehensive presurgical functional MRI language evaluation in adult patients with epilepsy. Epilepsy Behav. 2008;12(1):7483.Google Scholar
40Fernandes, MA, Smith, ML, Logan, W, Crawley, A, McAndrews, MP.Comparing language lateralization determined by dichotic listening and fMRI activation in frontal and temporal lobes in children with epilepsy. Brain Lang. 2006;96(1):10614.Google Scholar
41Pelletier, I, Sauerwein, HC, Lepore, F, Saint-Amour, D, Lassonde, M.Non-invasive alternatives to the Wada test in the presurgical evaluation of language and memory functions in epilepsy patients. Epileptic Disord. 2007;9(2):11126.Google Scholar
42Wada, J, Rasmussen, T.Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg. 1960;106(6):111733.Google Scholar
43Loddenkemper, T, Morris, HH, Moddel, G.Complications during the Wada test. Epilepsy Behav. 2008;13(3):5513.Google Scholar
44Jones-Gotman, M, Sziklas, V, Djordjevic, J, et al.Etomidate speech and memory test (eSAM): a new drug and improved intracarotid procedure. Neurology. 2005;65(11):17239.Google Scholar
45Jones-Gotman, M, Sziklas, V, Djordjevic, J.Intracarotid amobarbital procedure and etomidate speech and memory test. Can J Neurol Sci. 2009;36 Suppl 2:S514.Google Scholar
46Gallentine, WB, Mikati, MA.Intraoperative electrocorticography and cortical stimulation in children. J Clin Neurophysiol. 2009;26(2):95108.Google Scholar
47Hamberger, MJ, Seidel, WT, McKhann, GM 2nd, Perrine, K, Goodman, RR.Brain stimulation reveals critical auditory naming cortex. Brain. 2005;128(Pt 11):27429.Google Scholar
48Hartman, AL, Lesser, RP.Update on epilepsy and cerebral localization. Curr Neurol Neurosci Rep. 2007;7(6):498507.Google Scholar
49Ojemann, G, Ojemann, J, Lettich, E, Berger, M.Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71(3):31626.Google Scholar
50Chakraborty, A, McEvoy, AW.Presurgical functional mapping with functional MRI. Curr Opin Neurol. 2008;21(4):44651.Google Scholar
51Powell, HW, Duncan, JS.Functional magnetic resonance imaging for assessment of language and memory in clinical practice. Curr Opin Neurol. 2005;18(2):1616.Google Scholar
52Binder, JR, Sabsevitz, DS, Swanson, SJ, Hammeke, TA, Raghavan, M, Mueller, WM.Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia. 2008;49(8):137794.Google Scholar
53Binder, JR.Preoperative prediction of verbal episodic memory outcome using FMRI. Neurosurg Clin N Am. 2011;22(2):21932, ix.CrossRefGoogle ScholarPubMed
54Binder, JR, Gross, WL, Allendorfer, JB, et al.Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. Neuroimage. 2011;54(2):146575.CrossRefGoogle ScholarPubMed
55Binder, JR.Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy Behav. 2011;20(2):21422.Google Scholar
56Engstrom, M, Ragnehed, M, Lundberg, P, Soderfeldt, B.Paradigm design of sensory-motor and language tests in clinical fMRI. Neurophysiol Clin. 2004;34(6):26777.Google Scholar
57Gaillard, WD, Berl, MM, Duke, ES, et al.fMRI language dominance and FDG-PET hypometabolism. Neurology. 2011;76(15): 13229.CrossRefGoogle ScholarPubMed
58Waites, AB, Briellmann, RS, Saling, MM, Abbott, DF, Jackson, GD.Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol. 2006;59(2):33543.Google Scholar
59Desmond, JE, Sum, JM, Wagner, AD, et al.Functional MRI measurement of language lateralization in Wada-tested patients. Brain. 1995;118 (Pt 6):141119.Google Scholar
60Rutten, GJ, Ramsey, NF, van Rijen, PC, Alpherts, WC, van Veelen, CW.FMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage. 2002;17(1):44760.CrossRefGoogle ScholarPubMed
61Giussani, C, Roux, FE, Ojemann, J, Sganzerla, EP, Pirillo, D, Papagno, C.Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery. 2010;66(1):11320.Google Scholar
62Rutten, GJ, Ramsey, NF, van Rijen, PC, van Veelen, CW.Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang. 2002;80(3):42137.Google Scholar
63Fernandez, G, Specht, K, Weis, S, et al.Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology. 2003;60(6):96975.Google Scholar
64Fedorenko, E, Hsieh, PJ, Nieto-Castanon, A, Whitfield-Gabrieli, S, Kanwisher, N.New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J Neurophysiol. 2010;104(2):117794.Google Scholar
65Gartus, A, Foki, T, Geissler, A, Beisteiner, R.Improvement of clinical language localization with an overt semantic and syntactic language functional MR imaging paradigm. AJNR Am J Neuroradiol. 2009;30(10):197785.Google Scholar
66Fesl, G, Bruhns, P, Rau, S, et al.Sensitivity and reliability of language laterality assessment with a free reversed association task-a fMRI study. Eur Radiol. 2010;20(3):68395.Google Scholar
67Rodrigo, S, Oppenheim, C, Chassoux, F, et al.Language lateralization in temporal lobe epilepsy using functional MRI and probabilistic tractography. Epilepsia. 2008;49(8):136776.Google Scholar
68Tie, Y, Suarez, RO, Whalen, S, Radmanesh, A, Norton, IH, Golby, AJ.Comparison of blocked and event-related fMRI designs for pre-surgical language mapping. Neuroimage. 2009;47 Suppl 2: T10715.Google Scholar
69Rutten, GJ, Ramsey, NF, van Rijen, PC, Noordmans, HJ, van Veelen, CW.Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol. 2002;51(3):35060.Google Scholar
70Vigneau, M, Beaucousin, V, Herve, PY, et al.Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage. 2006;30(4):141432.Google Scholar
71Ellis, TL, Stevens, A.Deep brain stimulation for medically refractory epilepsy. Neurosurg Focus. 2008;25(3):E11.CrossRefGoogle ScholarPubMed
72Grattan-Smith, JD, Harvey, AS, Desmond, PM, Chow, CW.Hippocampal sclerosis in children with intractable temporal lobe epilepsy: detection with MR imaging. AJR Am J Roentgenol. 1993;161(5):10458.Google Scholar
73Nakatsuka, T, Chen, HX, Roper, SN, Gu, JG.Cannabinoid receptor-1 activation suppresses inhibitory synaptic activity in human dentate gyrus. Neuropharmacology. 2003;45(1):11621.Google Scholar
74Wiebe, S, Blume, WT, Girvin, JP, Eliasziw, M.A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):31118.Google Scholar
75Janszky, J, Jokeit, H, Kontopoulou, K, et al.Functional MRI predicts memory performance after right mesiotemporal epilepsy surgery. Epilepsia. 2005;46(2):244.-50.Google Scholar
76Mechanic-Hamilton, D, Korczykowski, M, Yushkevich, PA, et al.Hippocampal volumetry and functional MRI of memory in temporal lobe epilepsy. Epilepsy Behav. 2009;16(1):12838.Google Scholar
77Richardson, MP, Strange, BA, Duncan, JS, Dolan, RJ.Memory fMRI in left hippocampal sclerosis: optimizing the approach to predicting postsurgical memory. Neurology. 2006;66(5): 699705.Google Scholar
78Powell, HW, Richardson, MP, Symms, MR, et al.Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J Neurol Neurosurg Psychiatry. 2008;79(6):68693.Google Scholar
79Cheung, MC, Chan, AS, Lam, JM, Chan, YL.Pre- and postoperative fMRI and clinical memory performance in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry. 2009;80(10):1099106.Google Scholar
80Trenerry, MR, Jack, CR Jr., Ivnik, RJ, et al.MRI hippocampal volumes and memory function before and after temporal lobectomy. Neurology. 1993;43(9):18005.Google Scholar
81Bonelli, SB, Powell, RH, Yogarajah, M, et al.Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain. 2010;133(Pt 4):118699.Google Scholar
82Labudda, K, Mertens, M, Aengenendt, J, Ebner, A, Woermann, FG.Presurgical language fMRI activation correlates with postsurgical verbal memory decline in left-sided temporal lobe epilepsy. Epilepsy Res. 2010;92(2-3):25861.Google Scholar
83Atri, A, O’Brien, JL, Sreenivasan, A, et al.Test-retest reliability of memory task functional magnetic resonance imaging in Alzheimer disease clinical trials. Arch Neurol. 2011;68(5): 599606.Google Scholar
84Clement, F, Belleville, S.Test-retest reliability of fMRI verbal episodic memory paradigms in healthy older adults and in persons with mild cognitive impairment. Hum Brain Mapp. 2009;30(12):403347.Google Scholar
85Yendiki, A, Greve, DN, Wallace, S, et al.Multi-site characterization of an fMRI working memory paradigm: reliability of activation indices. Neuroimage. 2010;53(1):11931.Google Scholar
86De Tiege, X, Connelly, A, Liegeois, F, et al.Influence of motor functional magnetic resonance imaging on the surgical management of children and adolescents with symptomatic focal epilepsy. Neurosurgery. 2009;64(5):85664; discussion 864.Google Scholar
87Lee, CC, Ward, HA, Sharbrough, FW, et al.Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol. 1999;20(8):151119.Google Scholar
88Meier, JD, Aflalo, TN, Kastner, S, Graziano, MS.Complex organization of human primary motor cortex: a high-resolution fMRI study. J Neurophysiol. 2008;100(4):180012.Google Scholar
89Yoo, SS, Wei, X, Dickey, CC, Guttmann, CR, Panych, LP.Long-term reproducibility analysis of fMRI using hand motor task. Int J Neurosci. 2005;115(1):5577.Google Scholar
90Gountouna, VE, Job, DE, McIntosh, AM, et al.Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. Neuroimage. 2010;49(1):55260.Google Scholar
91Rao, SM, Bandettini, PA, Binder, JR, et al.Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab. 1996;16(6):12504.Google Scholar
92Mehta, AD, Klein, G.Clinical utility of functional magnetic resonance imaging for brain mapping in epilepsy surgery. Epilepsy Res. 2010;89(1):12632.Google Scholar
93Majos, A, Tybor, K, Stefanczyk, L, Goraj, B.Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol. 2005;15(6):114858.CrossRefGoogle ScholarPubMed
94Graveline, CJ, Mikulis, DJ, Crawley, AP, Hwang, PA.Regionalized sensorimotor plasticity after hemispherectomy fMRI evaluation. Pediatr Neurol. 1998;19(5):33742.Google Scholar
95de Bode, S, Mathern, GW, Bookheimer, S, Dobkin, B.Locomotor training remodels fMRI sensorimotor cortical activations in children after cerebral hemispherectomy. Neurorehabil Neural Repair. 2007;21(6):497508.Google Scholar
96McFadzean, RM, Condon, BC, Barr, DB.Functional magnetic resonance imaging in the visual system. J Neuroophthalmol. 1999;19(3):186200.Google Scholar
97Masuoka, LK, Anderson, AW, Gore, JC, McCarthy, G, Spencer, DD, Novotny, EJ.Functional magnetic resonance imaging identifies abnormal visual cortical function in patients with occipital lobe epilepsy. Epilepsia. 1999;40(9):124853.Google Scholar
98Polonara, G, Salvolini, S, Fabri, M, et al.Unilateral visual loss due to ischaemic injury in the right calcarine region: a functional magnetic resonance imaging and diffusion tension imaging follow-up study. Int Ophthalmol. 2011;31(2):12934.Google Scholar
99Chen, Z, Ni, P, Lin, Y, et al.Visual pathway lesion and its development during hyperbaric oxygen treatment: a bold- fMRI and DTI study. J Magn Reson Imaging. 2010;31(5):105460.Google Scholar
100Seghier, ML, Lazeyras, F, Zimine, S, Saudan-Frei, S, Safran, AB, Huppi, PS.Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: case report. BMC Neurol. 2005; 5:17.Google Scholar
101Berg, AT, Vickrey, BG, Langfitt, JT, et al.The multicenter study of epilepsy surgery: recruitment and selection for surgery. Epilepsia. 2003;44(11):142533.CrossRefGoogle ScholarPubMed
102Zijlmans, M, Huiskamp, G, Hersevoort, M, Seppenwoolde, JH, van Huffelen, AC, Leijten, FS.EEG-fMRI in the preoperative workup for epilepsy surgery. Brain. 2007;130(Pt 9):234353.Google Scholar
103Ives, JR, Warach, S, Schmitt, F, Edelman, RR, Schomer, DL.Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol. 1993;87(6):41720.Google Scholar
104Bagshaw, AP, Aghakhani, Y, Benar, CG, et al.EEG-fMRI of focal epileptic spikes: analysis with multiple haemodynamic functions and comparison with gadolinium-enhanced MR angiograms. Hum Brain Mapp. 2004;22(3):17992.Google Scholar
105Benar, CG, Grova, C, Kobayashi, E, et al.EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage. 2006;30(4):116170.Google Scholar
106Federico, P, Archer, JS, Abbott, DF, Jackson, GD.Cortical/subcortical BOLD changes associated with epileptic discharges: an EEG-fMRI study at 3 T. Neurology. 2005;64(7):112530.Google Scholar
107Gotman, J.Epileptic networks studied with EEG-fMRI. Epilepsia. 2008;49 Suppl 3:4251.CrossRefGoogle ScholarPubMed
108Vulliemoz, S, Lemieux, L, Daunizeau, J, Michel, CM, Duncan, JS.The combination of EEG source imaging and EEG-correlated functional MRI to map epileptic networks. Epilepsia. 2010;51 (4):491505.Google Scholar
109Gholipour, T, Moeller, F, Pittau, F, Dubeau, F, Gotman, J.Reproducibility of interictal EEG-fMRI results in patients with epilepsy. Epilepsia. 2011;52(3):43342.Google Scholar
110Cunningham, CJ, Zaamout Mel, F, Goodyear, B, Federico, P.Simultaneous EEG-fMRI in human epilepsy. Can J Neurol Sci. 2008;35(4):42035.Google Scholar
111Moeller, F, Tyvaert, L, Nguyen, DK, et al.EEG-fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology. 2009;73(23):202330.Google Scholar
112Li, Q, Luo, C, Yang, T, et al.EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Res. 2009;87(2-3):1608.Google Scholar
113Liu, Y, Yang, T, Liao, W, et al.EEG-fMRI study of the ictal and interictal epileptic activity in patients with eyelid myoclonia with absences. Epilepsia. 2008;49(12):207886.Google Scholar
114Thornton, R, Laufs, H, Rodionov, R, et al.EEG correlated functional MRI and postoperative outcome in focal epilepsy. J Neurol Neurosurg Psychiatry. 2010;81(8):9227.Google Scholar
115Shmuel, A, Augath, M, Oeltermann, A, Logothetis, NK.Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci. 2006;9(4): 56977.Google Scholar
116Biswal, B, Yetkin, FZ, Haughton, VM, Hyde, JS.Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):53741.Google Scholar
117Morgan, VL, Gore, JC, Abou-Khalil, B.Functional epileptic network in left mesial temporal lobe epilepsy detected using resting fMRI. Epilepsy Res.88(2-3):16878.Google Scholar
118Pereira, FR, Alessio, A, Sercheli, MS, et al.Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI. BMC Neurosci. 2010 Jun 2;11:66.Google Scholar
119Bettus, G, Guedj, E, Joyeux, F, et al.Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp. 2009;30(5):158091.CrossRefGoogle ScholarPubMed
120Bettus, G, Bartolomei, F, Confort-Gouny, S, et al.Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy. J Neurol Neurosurg Psychiatry. 2010;81(10):114754.CrossRefGoogle ScholarPubMed
121Moeller, F, Maneshi, M, Pittau, F, et al.Functional connectivity in patients with idiopathic generalized epilepsy. Epilepsia. 2011;52(3):51522.Google Scholar
122Bai, X, Guo, J, Killory, B, et al.Resting functional connectivity between the hemispheres in childhood absence epilepsy. Neurology. 2011;76(23):19607.Google Scholar
123Raichle, ME, MacLeod, AM, Snyder, AZ, Powers, WJ, Gusnard, DA, Shulman, GL.A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):67682.Google Scholar
124Broyd, SJ, Demanuele, C, Debener, S, Helps, SK, James, CJ, Sonuga-Barke, EJ.Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33(3):27996.Google Scholar
125Karmonik, C, Dulay, M, Verma, A, Yen, C, Grossman, RG.Brain activation in complex partial seizures during switching from a the goal-directed task to a resting state: comparison of fMRI maps to the default mode network. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:56858.Google Scholar
126Luo, C, Li, Q, Lai, Y, et al.Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study. Hum Brain Mapp. 2011;32(3):43849.Google Scholar
127Petitmengin, C, Baulac, M, Navarro, V.Seizure anticipation: are neurophenomenological approaches able to detect preictal symptoms? Epilepsy Behav. 2006;9(2):298306.Google Scholar
128Federico, P, Abbott, DF, Briellmann, RS, Harvey, AS, Jackson, GD.Functional MRI of the pre-ictal state. Brain. 2005;128(Pt 8):181117.Google Scholar
129Ebersole, JS.Defining epileptogenic foci: past, present, future. J Clin Neurophysiol. 1997;14(6):47083.Google Scholar
130Cunningham, CJ, Boucousis, SM, Goodyear, BG, Federico, P.Safety and feasibility of using implanted depth electrodes for intracranial EEG-fMRI: a phantom study (abstract). American Epilepsy Society Annual Meeting. 2007;Philadelphia, Pennsylvania.Google Scholar
131Vulliemoz, S, Carmichael, DW, Rosenkranz, K, et al.Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. Neuroimage. 2011;54(1):18290.Google Scholar