Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T23:42:29.109Z Has data issue: false hasContentIssue false

Functional MRI Localization of Language in a 9-Year-Old Child

Published online by Cambridge University Press:  18 September 2015

R.R. Benson*
Affiliation:
Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto
W.J. Logan
Affiliation:
Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto
G.R. Cosgrove
Affiliation:
Department of Neurology, Massachusetts General Hospital. Boston
A.J. Cole
Affiliation:
Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto
H. Jiang
Affiliation:
Department of Neurology, Massachusetts General Hospital. Boston
L.L. LeSueur
Affiliation:
Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto
B.R. Buchbinder
Affiliation:
Department of Neurosurgery, Massachusetts General Hospital, Boston
B.R. Rosen
Affiliation:
Department of Neurosurgery, Massachusetts General Hospital, Boston
V.S. Caviness Jr
Affiliation:
Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto
*
Massachusetts General Hospital, Harvard Medical School. Bldg. 149. 13th Street, Charlestown. MA USA 02129-2060
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Background: Localizing critical brain functions such as language in children is difficult and generally requires invasive techniques. Recently sensory, motor and language functions in adults have been mapped to specific brain locations using functional imaging techniques. Of these techniques, functional MRI (fMRI) is the least invasive and has the highest spatial and temporal resolution. Its use in adults is well documented but application to children has not been as well described. In the present study lateralization and localization of language was evaluated with fMRI prior to epilepsy surgery in a nine-year-old male with complex partial seizures, attentional difficulty and decreased verbal proficiency. Methods: Two language paradigms well studied in adults (read, verb generation) and two additional language paradigms (antonym generation, letter fluency) were studied using whole brain fMRI after stimulus items and timing were adjusted to achieve the desired performance level during imaging. The patient was also conditioned to the magnet environment prior to imaging. Results: Word reading and letter fluency tasks produced lateralized and localized activation similar to that seen in adults. The patient had no language deficits following an anterior 2/3 dominant temporal lobe resection. Conclusions: With modifications of protocols such as those detailed in this report, this non-invasive method for localizing language function is feasible for the presurgical evaluation of children as well being applicable for a variety of developmental language issues.

Résumé

Résumé

Localisation fonctionnelle du langage par RMN chez un enfant de 9 ans. Introduction: Il est difficile de localiser des fonctions critiques du cerveau comme le langage chez les enfants et une telle tâche requiert généralement des techniques invasives. Dernièrement, on a localisé à certaines régions spécifiques du cerveau des fonctions sensorielles, motrices et linguistiques chez des adultes au moyen de techniques d’imagerie fonctionnelle. Parmi ces techniques, la RMN fonctionnelle (RMNf) est la moins invasive et possède la meilleure résolution spatiale et temporale. Son utilisation chez les adultes est bien documentée, mais son application chez les enfants n’a pas été bien décrite. Dans cette étude, la latéralisation et la localisation du langage ont été évaluées par RMNf avant une chirurgie pour épilepsie chez un enfant de neuf ans qui avait des crises partielles complexes, des difficultés d’attention et une habileté verbale limitée. Méthodes: Deux paradigmes du langage qui ont été bien étudiés chez les adultes (la lecture, la génération des verbes) et deux paradigmes additionnels du langage (la génération des antonymes, la maîtrise des lettres) ont été étudiés au moyen de la RMNf du cerveau entier après avoir ajusté les items servant au stimulus et le chronométrage pour obtenir le niveau de performance désiré pendant l’imagerie. Le patient avait aussi été conditionné à l’environnement avant l’imagerie. Résultats: Les tâches impliquant lecture de mots et la maîtrise des lettres ont produit une activation latéralisée et localisée semblable à celle observée chez les adultes. Le patient n’avait pas de déficit du langage suite à une résection des deux tiers antérieurs du lobe temporal dominant. Conclusions: Avec des modifications du protocole comme celles qui sont décrites dans cet article, cette méthode non invasive pour localiser la fonction linguistique est utilisable pour l’évaluation préopératoire des enfants ainsi que pour certaines questions relatives au développement du langage.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1996

References

1. Wada, J. and Rasmussen, T. Intracarotid injection of sodium amytal for the lateralization of cerebral spech dominance. J Neurosurg 1960; 17: 266282.CrossRefGoogle Scholar
2. Pardo, JV. and Fox, PT. Preoperative assessment of the cerebral hemisphere dominance for language with CBF PET. Human Brain Mapping 1993; 1: 5768.Google Scholar
3. Kwong, KK., Belliveau, JW., Chesler, DA., et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89: 56755679.CrossRefGoogle ScholarPubMed
4. Benson, RR., Kwong, KK., Buchbinder, BR., et al. Noninvasive evaluation of language dominance using functional MRI. In: Proceedings of the Society of Magnetic Resonance 2nd Annual meeting, San Francisco 1994: 684.Google Scholar
5. Binder, JR., Rao, SM., Hammeke, TA., et al. Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol 1995; 52: 593601.CrossRefGoogle ScholarPubMed
6. Desmond, JE., Sum, JM., Wagner, AD., et al. Functional MRI measurement of language lateralization in Wada-tested patients. Brain 1995; 118: 14111419.Google Scholar
7. McCarthy, G., Blamire, AM., Rothman, DL., et al. Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proc Natl Acad Sci U S A 1993; 90: 49524956.CrossRefGoogle ScholarPubMed
8. Benson, RR., Belliveau, JW., Kwong, KK., et al. Preoperative mapping of language cortex with functional MRI. In: Proceedings of the 1st International Conference on Functional Mapping of the Human Brain, Paris, 1995: 351.Google Scholar
9. Shaywitz, BA., Shaywitz, SE., Pugh, KR., et al. Sex differences in the functional organization of the brain for language. Nature 1995; 373: 607609.Google Scholar
10. Jones-Gotman, M. Presurgical psychological assessment in children: special tests. J Epilepsy 1990; 3 Suppl.: 93102.Google Scholar
11. Jones-Gotman, M., Barr, WB., Dodrill, CB., et al. Controversies concerning the use of intraarterial amobarbital procedures. In: Engel, J. J., ed. Surgical Treatment of the Epilepsies. New York: Raven Press, 1993; 445449.Google Scholar
12. Casey, BJ., Cohen, JD., Jessard, P., et al. Activation of prefrontal cortex in children during a non-spatial working memory task with functional MRI. Human Brain Mapping Suppl 1995; 1: 330.Google Scholar
13. Gaillard, WD., Hertz-Pannier, L., Mott, S., et al. Identification of cortical language areas using 1.5T functional magnetic resonance imaging in children with epilepsy. Ann Neurol 1994; 36: 504.Google Scholar
14. Hertz-Pannier, L., Gaillard, WD., Mott, S., et al. Pre-operative assessment of language lateralization by FMRI in children with complex partial seizures: preliminary study. In: Proceedings of the Society of Magnetic Resonance 2nd Annual Meeting, San Francisco 1994: 326.Google Scholar
15. Hertz-Pannier, L., Gaillard, WD., Mott, S., et al. Functional MRI of language tasks: frontal diffuse activation patterns in children. Human Brain Mapping Suppl. 1995; 1: 231.Google Scholar
16. Novotny, EJJ., Masuoka, LK., Anderson, AW. and et al. Functional magnetic resonance imaging in pediatric epilepsy. Epilepsia 1994; 35 Suppl 8: 36.Google Scholar
17. Logan, WJ., Benson, RR., Cosgrove, GR., et al. Functional MRI (fMRI) localization of language in children. Can J Neurol Sci 1995; 22 Suppl 1: 24.Google Scholar
18. Holmes, G. and Frosch, M. Case records of the Massachusetts General Hospital. N Engl J Med 1996; 334: 586592.Google Scholar
19. Jiang, A., Kennedy, DN., Baker, JR., et al. Motion detection and correction in functional MR imaging. Human Brain Mapping (in press).Google Scholar
20. Woods, RP., Cherry, SR. and Mazziotta, JC. Rapid automated algorithim for aligning and reslicing PET images. J Comput Assist Tomogr 1992; 16: 620633.Google Scholar
21. Breiter, HC., Rauch, SL., Kwong, KK. et al. Functional magnetic resonance imaging of symptom provocation in obsessive compulsive disorder. Arch Gen Psychiatr 1996: In Press.Google Scholar
22. Robb, RA. and Parillot, C. Interactive display and analysis of 3D medical images. IEEE Trans Med Imag 1989: 8: 217226.Google Scholar
23. Petersen, SE. and Fiez, JA. The processing of single words studied with positron emission tomography. Ann Rev Neurosci 1993; 509529.Google Scholar
24. Petersen, SE., Fox, PT., Posner, MI., et al. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 1988; 331: 585589.Google Scholar
25. Wise, R., Chollet, F., Hadar, U., et al. Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain 1991; 114: 18031817.CrossRefGoogle ScholarPubMed
26. Corbetta, M., Miezin, FM., Dobmeyer, S., et al. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 1991; 11: 23832402.Google Scholar
27. Allison, T., Ginter, H., McCarthy, G., et al. Face recognition in extrastriate cortex. J Neurophysiol 1994; 71: 821825.CrossRefGoogle ScholarPubMed
28. Haxby, JV., Grady, CL., Horowitz, B., et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci 1991; 88: 16211625.Google Scholar
29. Sergent, J., Ohta, S. and Macdonald, B. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 1992; 115: 1536.Google Scholar
30. Martin, N. and Saffran, E. A computational account of deep dysphasia: evidence from a single case study. Brain-Lang. 1992; 43: 24074.Google Scholar
31. Petersen, SE., Fox, PT., Snyder, AZ. and Raichle, ME. Activation of extrastriate and frontal cortical areas by visual words and wordlike stimuli. Science 1990; 24: 10411044.Google Scholar
32. Woods, BT. and Teuber, HL. Changing patterns of childhood aphasia. Ann. Neurol. 1978; 3: 27380.Google Scholar
33. Benson, RR., Kwong, KK., Belliveau, JW., et al. Magnetic resonance imaging studies of visual word recognition: words versus false font strings. In: Proceedings of the 23rd Annual Meeting of the Society for Neuroscience, Washington, DC: 1994; 740.1.Google Scholar
34. Zatorre, R., Evans, A., Meyer, E. and Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 1992; 256: 8469.Google Scholar
35. Stephan, KMFG. Passingham, RE., Silbersweig, D., Ceballos Baumann, AO., Frith, CD., Frackowiak, RS. Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J of Neurophysiol 1995; 73: 373386.Google Scholar
36. Dehaene-Lambert, G. and Dehaene, S. Speech and cerebral correlates of syllable discrimination in infants. Nature 1994; 370: 2925.Google Scholar
37. Benson, RR., Buchbinder, BR., Jiang, H., et al. Comparison of fMRI with electrocortical stimulation language mapping. In: Proceedings of the Society for Neuroscience 25th Annual Meeting, San Diego: 1995; 116.8.Google Scholar
38. Chugani, HT., Phelps, ME. and Maziotta, JC. Positron emission tomography study of human functional development. Ann Neurol 1987; 22: 487497.CrossRefGoogle ScholarPubMed
39. Huttenlocher, PR., De Courten, C., Gareu, LJ. and Van Der Loos, H. Synaptogenesis in human visual cortex – evidence for synapse elimination during normal development. Neurosci Lett 1982; 33: 247252.CrossRefGoogle ScholarPubMed