Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T02:25:14.942Z Has data issue: false hasContentIssue false

Human Tonotopic Maps and their Rapid Task-Related Changes Studied by Magnetic Source Imaging

Published online by Cambridge University Press:  02 December 2014

Isamu Ozaki
Affiliation:
Aomori University of Health and Welfare, Aomori
Isao Hashimoto
Affiliation:
Human Information Systems Laboratory, Kanazawa Institute of Technology, Tokyo, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A brief review of previous studies is presented on tonotopic organization of primary auditory cortex (AI) in humans. Based on the place theory for pitch perception, in which place information from the cochlea is used to derive pitch, a well-organized layout of tonotopic map is likely in human AI. The conventional view of tonotopy in human AI is a layout inwhich the medial-to-lateral portion of Heschl's gyrus represents high-to-low frequency tones. However, we have shown that the equivalent current dipole (BCD) in auditory evoked magnetic fields in the rising phase of N100m response dynamically moves along the long axis of Heschl's gyrus. Based on analyses of the current sources for high-pitched and low-pitched tones in the right and left hemispheres, we propose an alternative tonotopic map in human AI. In the right AI, isofrequency bands for each tone frequency are parallell to the first transverse sulcus; on the other hand, the layout for tonotopy in the left AI seems poorly organized. The validity of single dipole modelling in the calculation of a moving source and the discrepancy as to tonotopic maps in the results between auditory evoked fields or intracerebral recordings and neuroimaging studies also are discussed. The difference in the layout of isofrequency bands between the right and left auditory cortices may reflect distinct functional roles in auditory information processing such as pitch versus phonetic analysis.

Résumé:

RÉSUMÉ:

Nous présentons une brève revue des études antérieures sur l'organisation tonotopique du cortex auditif primaire (A1) chez l'humain. Sur la base de la théorie du lieu de perception de la hauteur tonale, selon laquelle l'information sur le lieu provenant de la cochlée est utilisée pour inférer la hauteur tonale, il est probable qu'il existe un schéma bien organisé de carte tonotopique dans le A1 humain. La conception conventionnelle de la tonotopie dans le A1 humain est un schéma dans lequel la portion médiale à latérale du gyrus de Heschl représente les tonalités des fréquences de hautes à basses. Cependant, nous avons démontré que le dipôle de courant équivalent dans les champs magnétiques évoqués auditifs dans la phase ascendante de la réponse des ondes N100m se déplace dynamiquement le long du grand axe du gyrus de Heschl. Selon les analyses des sources de courant des hautes tonalités et des basses tonalités dans l'hémisphère droit et dans l'hémisphère gauche, nous proposons une carte tonotopique alternative du A1 humain. Dans le A1 droit, les bandes d'isofréquence pour chaque fréquence tonale sont parallèles au premier sillon transverse; d'autre part, le schéma tonotopique dans l'A1 gauche semble peu organisé. Nous discutons également de la validité de la modélisation au moyen d'un seul dipôle pour le calcul d'une source en mouvement et de la discordance entre les cartes tonotopiques quant aux résultats des champs évoqués auditifs ou des enregistrements cérébraux et des études de neuroimagerie. La différence entre le schéma des bandes d'isofréquence des cortex auditifs droit et gauche pourrait refléter des rôles fonctionnels distincts dans le traitement de l'information auditive comme la hauteur tonale par opposition à l'analyse phonétique.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Schulze, H, Langner, G. Periodicity coding in the primary auditory cortex of the Mongolian gerbil (Meriones unguiculatus): two different coding strategies for pitch and rhythm? J Comp Physiol. [A] 1997; 181: 651-63.Google Scholar
2. Griffiths, TD, Buchel, C, Frackowiak, RS, Patterson, RD. Analysis of temporal structure in sound by the human brain. Nat Neurosci. 1998; 1: 422-7.CrossRefGoogle ScholarPubMed
3. Griffiths, TD, Uppenkamp, S, Johnsrude, I, Josephs, O, Patterson, RD. Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 2001; 4: 633-7.Google Scholar
4. Lu, T, Liang, L, Wang, X. Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci. 2001; 4: 1131-8.Google Scholar
5. Shamma, SA. Topographic organization is essential for pitch perception. Proc Natl Acad Sci. 2004; 101: 1114-5.Google Scholar
6. Oxenham, AJ, Bernstein, JG, Penagos, H. Correct tonotopic representation is necessary for complex pitch perception. Proc Natl Acad Sci. 2004; 101: 1421-5.Google Scholar
7. Romani, GL, Williamson, SJ, Kaufman, L. Tonotopic organization of the human auditory cortex. Science. 1982; 216: 1339-40.Google Scholar
8. Sams, M, Hämäläinen, M, Antervo, A, Kaukoranta, E, Reinikainen, K, Hari, R. Cerebral neuromagnetic responses evoked by short auditory stimuli. Electroenceph Clin Neurophysiol. 1985; 61: 254-66.CrossRefGoogle ScholarPubMed
9. Lauter, JL, Herscovitch, P, Formbyc, C, Raichle, ME. Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res. 1985; 20: 199-205.CrossRefGoogle ScholarPubMed
10. Wessinger, CM, Buonocore, MH, Kussmaul, CL, Mangun, GR. Tonotopy in human auditory cortex examined with functional magnetic resonance imaging. Hum Brain Mapp. 1997; 5: 18-25.Google Scholar
11. Bilecen, D, Scheffler, K, Schmid, N, Tschopp, K, Seelig, J. Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI. Hear Res. 1998; 126: 19-27.Google Scholar
12. Näätänen, R, Picton, T. The Nl wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology. 1987; 24: 375-425.CrossRefGoogle Scholar
13. Pantev, C, Hoke, M, Lehnertz, K, Lütkenhöner, B, Anogianakis, G, Wittkowski, W. Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroenceph Clin Neurophysiol. 1988; 69: 160-70.Google Scholar
14. Pantev, C, Bertrand, O, Eulitz, C, Verkindt, C, Hampson, S, Schuierer, G, et al. Specific Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroenceph Clin Neurophysiol. 1995; 94: 26-40.Google Scholar
15. Pantev, C, Ross, B, Berg, P, Elbert, T, Rockstroh, B. Study of the human auditory cortices using a whole-head magnetometer: left vs. right hemisphere and ipsilateral vs. contralateral stimulation . Audiol Neurootol. 1998; 3: 183-90.Google Scholar
16. Huotilainen, M, Tiitinen, H, Lavikainen, J, Ilmoniemi, RJ, Pekkonen, E, Sinkkonen, J, et al. Sustained fields of tones and glides reflect tonotopy of the auditory cortex. Neuroreport. 1995; 6: 841-4.Google Scholar
17. Rojas, DC, Bawn, SD, Carlson, JP, Arciniegas, DB, Teale, PD, Reite, ML. Alterations in tonotopy and auditory cerebral asymmetry in schizophrenia. Biol Psychiatry. 2002; 52: 32-9.Google Scholar
18. Arlinger, S, Elberling, C, Bak, C, Kofoed, B, Lebech, J, Saermark, K. Cortical magnetic fields evoked by frequency glides of a continuous tone. Electroenceph Clin Neurophysiol. 1982; 54: 642-53.Google Scholar
19. Rosburg, T, Kreitschmann-Andermahr, I, Emmerich, E, Nowak, H, Sauer, H. Tonotopy of the auditory-evoked field component NI00m in patients with schizophrenia. J Psychophysiol. 2000; 14:131-41.Google Scholar
20. Roberts, TP, Poeppel, D. Latency of auditory evoked M100 as a function of tone frequency. Neuroreport. 1996; 7: 1138-40.Google Scholar
21. Lütkenhöner, B. Single-dipole analyses of the NI00m are not suitable for characterizing the cortical representation of pitch. Audiol Neurootol. 2003; 8: 222-33.Google Scholar
22. Lütkenhöner, B, Krumbholz, K, Seither-Preisler, A. Studies of tonotopy based on wave N100 of the auditory evoked field are problematic. Neuroimage. 2003; 19: 935-49.Google Scholar
23. Liégeois-Chauvel, C, Musolino, A, Chauvel, P. Localization of the primary auditory area in man. Brain. 1991; 114: 139-51.Google ScholarPubMed
24. Liégeois-Chauvel, C, Musolino, A, Badier, JM, Marquis, P, Chauvel, P. Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroenceph Clin Neurophysiol. 1994; 92: 204-14.Google Scholar
25. Galaburda, A, Sanides, F. Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol. 1980; 190: 597-610.Google Scholar
26. Rademacher, J, Caviness, VS Jr, Steinmetz, H, Galaburda, AM. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex. 1993; 3: 313-29.CrossRefGoogle ScholarPubMed
27. Rivier, F, Clarke, S. Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage. 1997; 6: 288-304.CrossRefGoogle ScholarPubMed
28. Morosan, P, Rademacher, J, Schleicher, A, Amunts, K, Schormann, T, Zilles, K. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage. 2001; 13: 684-701.Google Scholar
29. Rademacher, J, Morosan, P, Schormann, T, Schleicher, A, Werner, C, Freund, HJ, et al. Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage. 2001; 13: 669-683.Google Scholar
30. Schreiner, CE. Spatial distribution of responses to simple and complex sounds in the primary auditory cortex. Audiol Neurootol. 1998; 3: 104-22.Google Scholar
31. Recanzone, GH, Schreiner, CE, Sutter, ML, Beitel, RE, Merzenich, MM. Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. J Comp Neurol. 1999; 415: 460-81.Google Scholar
32. Ojima, H, Honda, CN, Jones, EG. Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. Cereb Cortex. 1991; 1: 80-94.Google Scholar
33. Ojima, H, Honda, CN, Jones, EG. Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex. Cereb Cortex. 1992; 2: 197-216.Google Scholar
34. Kubota, M, Sugimoto, S, Horikawa, J, Nasu, M, Taniguchi, I. Optical imaging of dynamic horizontal spread of excitation in rat auditory cortex slices. Neurosci Lett. 1997; 237: 77-80.Google Scholar
35. Gilbert, CD, Wiesel, TN. Clustered intrinsic connections in cat visual cortex. J Neurosci. 1983; 3: 1116-33.Google Scholar
36. Schwarz, C, Bolz, J. Functional specificity of a long-range horizontal connection in cat visual cortex: a cross-correlation study. J Neurosci. 1991; 11: 2995-3007.Google Scholar
37. DeFelipe, J, Conley, M, Jones, EG. Long range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex. J Neurosci. 1986; 6: 3749-66.CrossRefGoogle ScholarPubMed
38. Landry, P, Labelle, A, Deschênes, M. Intracortical distribution of axonal collaterals of pyramidal tract cells in the cat motor cortex. Brain Res. 1980; 191: 327-36.Google Scholar
39. Hashimoto, I, Kimura, T, Iguchi, Y, Takino, R, Sekihara, K. Dynamic activation of distinct cytoarchitectonic areas of the human SI cortex after median nerve stimulation. Neuroreport. 2001; 12: 1891-7.Google Scholar
40. Hashimoto, I, Kimura, T, Sakuma, K, Iguchi, Y, Saito, Y, Terasaki, O, et al. Dynamic mediolateral activation of the pyramidal cell population in human somatosensory 3b area can be visualized by magnetic recordings. Neurosci Lett. 2000; 280: 25-8.Google Scholar
41. Kimura, T, Hashimoto, I. Source of somatosensory primary cortical evoked magnetic fields (N20m) elicited by index finger stimulation moves toward mediolateral direction in area 3b in man. Neurosci Lett. 2001; 299: 61-4.Google Scholar
42. Ozaki, I, Yaegashi, Y, Kimura, T, Baba, M, Matsunaga, M, Hashimoto, I. Dipole orientation differs between high frequency oscillations and N20m current sources in human somatosensory evoked magnetic fields to median nerve stimulation. Neurosci Lett. 2001; 310: 41-4.Google Scholar
43. Ozaki, I, Jin, CY, Suzuki, Y, Matsunaga, M, Hashimoto, I. Dynamic anterolateral movement of N100m dipoles in evoked magnetic field reflects activation of isofrequency bands through horizontal fibers in human auditory cortex. Neurosci Lett. 2002; 329: 222-6.Google Scholar
44. Ozaki, I, Suzuki, Y, Jin, CY, Baba, M, Matsunaga, M, Hashimoto, I. Dynamic movement of N100m dipoles in evoked magnetic field reflects sequential activation of isofrequency bands in human auditory cortex. Clin Neurophysiol. 2003; 114: 1681-8.Google Scholar
45. Hashimoto, I, Sakuma, K, Kimura, T, Iguchi, Y, Sekihara, K. Serial activation of distinct cytoarchitectonic areas of the human SI cortex after posterior tibial nerve stimulation. Neuroreport. 2001; 12: 1857-62.Google Scholar
46. Ozaki, I, Jin, CY, Suzuki, Y, Baba, M, Matsunaga, M, Hashimoto, I. Rapid change of tonotopic maps in the human auditory cortex during pitch discrimination. Clin Neurophysiol. 2004; 115: 1592-604.CrossRefGoogle ScholarPubMed
47. Godey, B, Schwartz, D, de Graaf, JB, Chauvel, P, Liégeois-Chauvel, C. Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: a comparison of data in the same patients. Clin Neurophysiol. 2001; 112: 1850-9.CrossRefGoogle ScholarPubMed
48. Zatorre, RJ. Music perception and cerebral function. A critical review. Music Percept. 1984; 2: 196-221.Google Scholar
49. Ohtomo, S, Nakasato, N, Kanno, A, Hatanaka, K, Shirane, R, Mizoi, K, et al. Hemispheric asymmetry of the auditory evoked N100m response in relation to the crossing point between the central sulcus and Sylvian fissure. Electroencephal Clin Neurophysiol. 1998; 108: 219-25.Google Scholar
50. Formisano, E, Kim, DS, Di Salle, F, van de Moortele, PF, Ugurbil, K, Goebel, R. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron. 2003; 40: 859-69.Google Scholar
51. Pantev, C, Oostenveld, R, Engelien, A, Ross, B, Roberts, LE, Hoke, M. Increased auditory cortical representation in musicians. Nature. 1998; 392: 811-14.Google Scholar
52. Recanzone, GH, Schreiner, CE, Sutter, ML, Beitel, RE, Merzenich, MM. Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. J Comp Neurol. 1993; 415: 460-81.Google Scholar
53. Yan, J. Canadian Association of Neuroscience Review: development and plasticity of the auditory cortex. Can J Neurol Sci. 2003; 30: 189-200.Google Scholar
54. Hari, R, Hämäläinen, M, Kaukoranta, E, Mäkelä, J, Joutsiniemi, SL, Tiihonen, J. Selective listening modifies activity of the human auditory cortex. Exp Brain Res, 1989; 74: 463-70.CrossRefGoogle ScholarPubMed
55. Rif, J, Hari, R, Hämäläinen, MS, Sams, M. Auditory attention affects two different areas in the human supratemporal cortex. Electroenceph Clin Neurophysiol. 1991; 79: 464-72.Google Scholar
56. Woldorff, MG, Gallen, CC, Hampson, SA, Hillyard, SA, Pantev, C, Sobel, D, et al. Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci. (USA) 1993; 90: 8722-6.Google Scholar
57. Hillyard, SA, Hink, RF, Schwent, VL, Picton, TW. Electrical signs of selective attention in the human brain. Science. 1973; 182: 177-80.Google Scholar
58. Woldorff, MG, Hillyard, SA. Modulation of early auditory processing during selective listening to rapidly presented tones. Electroenceph Clin Neurophysiol. 1991; 79: 170-91.Google Scholar
59. Tzourio, N, Massioui, FE, Crivello, F, Joliot, M, Renault, B, Mazoyer, B. Functional anatomy of human auditory attention studied with PET. Neuroimage. 1997; 5: 63-77.Google Scholar
60. Alho, K, Medvedev, SV, Pakhomov, SV, Roudas, MS, Tervaniemi, M, Reinikainen, K, et al. Selective tuning of the left and right auditory cortices during spatially directed attention. Brain Res Cogn Brain Res. 1999; 7: 335-41.Google Scholar
61. Bakin, JS, Weinberger, NM. Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Natl Acad Sci. 1996; 93: 11219-24.Google Scholar
62. Kilgard, MP, Merzenich, MM. Cortical map reorganization enabled by nucleus basalis activity. Science. 1998; 279: 1714-18.Google Scholar
63. Melherate, R. Nicolinic acelylcholine receptors in sensory cortex. Learn Mem. 2004; 11: 50-9.Google Scholar
64. Fritz, JB, Elhilali, M, Shamma, SA. Differential dynamic plasticity of Al receptive fields during multiple spectral tasks. J Neurosci. 2005; 25: 7623-35.Google Scholar
65. Fritz, J, Elhilali, M, Shamma, S. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Hear Res. 2005; 206: 159-76.Google Scholar
66. Iguchi, Y, Hoshi, Y, Hashimoto, I. Selective spatial attention induces short-term plasticity in human somatosensory cortex. Neuroreport. 2001; 12: 3133-6.Google Scholar
67. Iguchi, Y, Hoshi, Y, Tanosaki, M, Taira, M, Hashimoto, I. Selective attention regulates spatial and intensity information processing in the human primary somatosensory cortex. Neuroreport. 2002; 13: 2335-9.Google Scholar
68. Iguchi, Y, Hoshi, Y, Tanosaki, M, Taira, M, Hashimoto, I. Attention induces reciprocal activity in the human somatosensory cortex enhancing relevant and suppressing irrelevant inputs from fingers. Clin Neurophysiol. 2005; 116: 1077-87.Google Scholar