Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T02:06:39.009Z Has data issue: false hasContentIssue false

Hydroxyl Radical Production in the Cortex and Striatum in a Rat Model of Focal Cerebral Ischemia

Published online by Cambridge University Press:  04 August 2016

Line Ste-Marie
Affiliation:
Centre de Recherche du CHUM-Hôpital Notre-Dame, and Département de Nutrition, Université de Montréal
Pascal Vachon
Affiliation:
Phoenix International, St. Laurent, Québec
Luc Vachon
Affiliation:
Centre de Recherche du CHUM-Hôpital Notre-Dame, and Département de Nutrition, Université de Montréal
Chantal Bémeur
Affiliation:
Centre de Recherche du CHUM-Hôpital Notre-Dame, and Département de Nutrition, Université de Montréal
Marie-Claude Guertin
Affiliation:
Centre de Recherche du CHUM-Hôpital Hôtel Dieu
Jane Montgomery*
Affiliation:
Centre de Recherche du CHUM-Hôpital Notre-Dame, and Département de Nutrition, Université de Montréal
*
Laboratoire de neurobiologie, CHUM-HôpitalNotre-Dame, M.8208, 1560 Sherbrooke St.E., Montréal, Québec, Canada H2L 4M1
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Increases in hydroxyl radical production have been used as evidence of oxidative stress in cerebral ischemia/ reperfusion. Ischemia can also induce increased dopamine release from the striatum that may contribute to hydroxyl radical formation. We have compared hydroxyl radical production in the cortex and striatum as an index of oxidative stress in a rat model of focal cerebral ischemia with cortical infarction.

Methods:

Using a three vessel occlusion model of focal cerebral ischemia combined with bilateral microdialysis, hydroxylation of 4-hydroxybenzoate (4HB) was continuously monitored in both hemispheres in either the lateral striatum or frontoparietal cortex. The ischemia protocol consisted of one hour equilibration, 30 min of three vessel occlusion, then release of the contralateral common carotid artery (CCA) for 2.5 h.

Results:

Induction of ischemia resulted in a 30-fold increase in dopamine release in the lateral striatum. Compared to the nonischemic striatum, the ratio of the hydroxylation product 3,4-dihydroxybenzoate (34DHB) to 4HB (trapping agent) in the ipsilateral striatum increased significantly 30 min after ischemia induction. In contrast, during the 30 min of three vessel occlusion there was no increase in the ratio in the cortex. Following the release of the contralateral CCA, the ratio from the ischemic cortex increased significantly compared to sham-operated animals. However, under all circumstances, the 34DHB/4HB ratio was greater in the striatum than in the cortex.

Conclusion:

The increase in the 34DHB/4HB ratio in the lateral striatum coincides with the increased dopamine release suggesting a role for dopamine oxidation in the increased production of hydroxyl radicals. The significant increase in the ratio from the ischemic cortex compared to that from the sham-operated animals is consistent with increased oxidative stress induced by ischemia. However, the lower 34DHB/4HB ratio in the cortex whichdoes not receive dopaminergic innervation compared to the striatum suggests a different mechanism for hydroxyl radical production. Such an alternate mechanism may represent a more toxic oxidative insult that contributes to infarction.

Type
Experimental Neurosciences
Copyright
Copyright © The Canadian Journal of Neurological 2000

References

REFERENCES

1. Siesjö, BK. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J Neurosurg 1992;77:337354.CrossRefGoogle ScholarPubMed
2. Siesjö, BK. Pathophysiology and treatment of focal ischemia. Part I: Pathophysiology. J Neurosurg 1992;77:169184.CrossRefGoogle ScholarPubMed
3. Choi, DW, Rothman, SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990;13:171182.CrossRefGoogle ScholarPubMed
4. Lancelot, E, Callebert, J, Revaud, M-L, et al. Detection of hydroxyl radicals in rat striatum during transient focal cerebral ischemia: possible implication in tissue damage. Neurosci Lett 1995;197:8588.CrossRefGoogle ScholarPubMed
5. Morimoto, T, Globus, MYT, Busto, R, et al. Simultaneous measurement of salicylate hydroxylation and glutamate release in the penumbral cortex following transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 1996;16:9299.CrossRefGoogle ScholarPubMed
6. Wei, J, Huang, NC, Quast, MJ. Hydroxyl radical formation in hyperglycemic rats during middle cerebral artery occlusion/reperfusion. Free Radic Biol Med 1997;23:986995.CrossRefGoogle ScholarPubMed
7. Yang, C-S, Lin, N-N, Tsai, P-J, et al. In vivo evidence of hydroxyl radical formation induced by elevation of extracellular glutamate after cerebral ischemia in the cortex of anesthetized rats. Free Radic Biol Med 1996;20:245250.CrossRefGoogle ScholarPubMed
8. Wei, J, Quast, MJ. Effect of nitric oxide synthase inhibitor on a hyperglycemic rat model of reversible focal ischemia: detection of excitatory amino acids release and hydroxyl radical formation. Brain Res 1998;791:146156.CrossRefGoogle ScholarPubMed
9. Solenski, NJ, Kwan, A-L, Yanamoto, H, et al. Differential hydroxylation of salicylate in core and penumbra regions during focal reversible cerebral ischemia. Stroke 1997;28:25452552.Google Scholar
10. Lei, B, Adachi, N, Nagaro, T, et al. The effect of dopamine depletion on the H2O2 production in the rat striatum following transient middle cerebral artery occlusion. Brain Res 1997;764:299302.CrossRefGoogle ScholarPubMed
11. Landolt, H, Lutz, TW, Langemann, H, et al. Extracellular antioxidants and amino acids in the cortex of the rat: monitoring by microdialysis of early ischemic changes. J Cereb Blood Flow Metab 1992;12:96102.CrossRefGoogle ScholarPubMed
12. Uemura, Y, Miller, JM, Matson, WR, et al. Neurochemical analysis of focal ischemia in rats. Stroke 1991;22:15481553.CrossRefGoogle ScholarPubMed
13. Piantadosi, CA, Zhang, J. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 1996;27:327332.CrossRefGoogle ScholarPubMed
14. Yamamoto, T, Yuki, S, Watanabe, T, et al. Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia. Brain Res 1997;762:240242.CrossRefGoogle Scholar
15. Zhang, J, Piantadosi, CA. Prolonged production of hydroxyl radical in rat hippocampus after brain ischemia-reperfusion is decreased by 21-aminosteroids. Neurosci Lett 1994;177:127130.Google ScholarPubMed
16. Althaus, JS, Andrus, PK, Williams, CM, et al. The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury. Mol Chem Neuropathol 1993;20:147162.CrossRefGoogle ScholarPubMed
17. Hall, ED, Andrus, PK, Althaus, JS, et al. Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain. J Neurosci Res 1993;34:107112.CrossRefGoogle ScholarPubMed
18. Spinnewyn, B, Cornet, S, Auguet, M, et al. Synergistic protective effects of antioxidant and nitric oxide synthase inhibitor in transient focal ischemia. J Cereb Blood Flow Metab 1999;19:139143.CrossRefGoogle ScholarPubMed
19. Chiueh, CC, Krishna, G, Tulsi, P, et al. Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: effect of MPP+ . Free Radic Biol Med 1992;13:581583.CrossRefGoogle ScholarPubMed
20. Chiueh, CC, Wu, , Mohanakumar, KP, et al. In vivo generation of hydroxyl radicals and MPTP-induced dopaminergic toxicity in the basal ganglia. Ann N Y Acad Sci 1994;738:2536.CrossRefGoogle ScholarPubMed
21. Globus, MYT, Ginsberg, MD, Dietrich, WD, et al. Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci Lett 1987;80:251256.CrossRefGoogle ScholarPubMed
22. Ren, Y, Li, X, Xu, ZC. Asymmetrical protection of neostriatal neurons against transient forebrain ischemia by unilateral dopamine depletion. Exp Neurol 1997;146:250257.CrossRefGoogle ScholarPubMed
23. Ste-Marie, L, Boismenu, D, Vachon, L, et al. Evaluation of sodium 4-hydroxybenzoate as an hydroxyl radical trap using gas chromatography-mass spectrometry and high-performance liquid chromatography with electrochemical detection. Anal Biochem 1996;6774.CrossRefGoogle ScholarPubMed
24. Bogdanov, MB, Ramos, LE, Xu, Z, et al. Elevated “hydroxyl radical” generation in vivo in an animal model of amyotrophic lateral sclerosis. J Neurochem 1998;71:13211324.CrossRefGoogle Scholar
25. Montgomery, J, Ste-Marie, L, Boismenu, D, et al. Hydroxylation of aromatic compounds as indices of hydroxyl radical production: a cautionary note revisited. Free Radic Biol Med 1995;19:927933.CrossRefGoogle ScholarPubMed
26. Paxinos, G, Watson, C. The rat brain in stereotaxic co-ordinates. Toronto, Academic Press, 1986.Google Scholar
27. Chen, ST, Hsu, CY, Hogan, EL, et al. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 1986;17:738743.CrossRefGoogle Scholar
28. Buchan, AM, Xue, D, Slivka, A. A new model of temporary focal ischemia in the rat. Stroke 1992;23:273279.CrossRefGoogle ScholarPubMed
29. Bederson, JB, Pitts, LH, Germano, SM, et al. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 1986;17:13041308.CrossRefGoogle ScholarPubMed
30. Floyd, RA, Watson, JJ, Wong, PK. Sensitive assay of hydroxyl free radical formation utilizing high-performance liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J Biochem Biophys Methods 1984;10:221235.CrossRefGoogle ScholarPubMed
31. Grootveld, M, Halliwell, B. Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Biochem J 1986;237:499504.CrossRefGoogle ScholarPubMed
32. Ste-Marie, L, Vachon, L, Bémeur, C, et al. Local striatal infusion of MPP+ does not result in increased hydroxylation after systemic administration of 4-hydroxybenzoate. Free Radic Biol Med 1999;27:9971007.CrossRefGoogle Scholar
33. Globus, MYT, Ginsberg, MD, Schnippering, H, et al. Detection of free radical activity during ischemia by salicylate trapping and microdialysis. Stroke 1994;25:254254.Google Scholar
34. Hillered, L, Hallstrom, A, Segersvard, S, et al. Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab 1989;9:607616.CrossRefGoogle ScholarPubMed
35. Wood, ER, Coury, A, Blaha, CD, et al. Extracellular dopamine in the rat striatum during ischemia and reperfusion as measured by in vivo electrochemistry and in vivo microdialysis. Brain Res 1992;591:151159.CrossRefGoogle ScholarPubMed
36. Akiyama, Y, Ito, A, Koshimura, K, et al. Effects of transient forebrain ischemia and reperfusion on function of dopaminergic neurons and dopamine reuptake in vivo in rat striatum. Brain Res 1991;561:120127.CrossRefGoogle ScholarPubMed
37. Chang, CJ, Ishii, H, Yamamoto, H, et al. Effects of cerebral ischemia on regional dopamine release and D1 and D2 receptors. J Neurochem 1993;60:14831490.CrossRefGoogle ScholarPubMed
38. Damsma, G, Boisvert, DP, Mudrick, LA, et al. Effects of transient forebrain ischemia and pargyline on extracellular concentrations of dopamine, serotonin, and their metabolites in the rat striatum as determined by in vivo microdialysis. J Neurochem 1990;54:801808.CrossRefGoogle ScholarPubMed
39. Obrenovitch, TP, Richards, DA. Extracellular neurotransmitter changes in cerebral ischemia. Cerebrovas Brain Metab Rev 1995; 7:154.Google Scholar
40. Obata, T, Chiueh, CC. In vivo trapping of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate : effects of MPTP, MPDP+, and MPP+ . J Neural Transm 1992;89:139145.CrossRefGoogle ScholarPubMed
41. Clemens, JA, Phebus, LA. Dopamine depletion protects striatal neurons from ischemia-induced cell death. Life Sci 1988;42:707713.CrossRefGoogle ScholarPubMed
42. Spranger, M, Krempien, S, Schwab, S, et al. Superoxide dismutase activity in serum of patients with acute cerebral ischemic injury. Correlation with clinical course and infarct size. Stroke 1997;28:24252428.CrossRefGoogle ScholarPubMed
43. Sutherland, GR, Bose, R, Louw, DF, et al. Global elevation of brain superoxide dismutase activity following forebrain ischemia in rat. Neurosci Lett 1991;128:169172.CrossRefGoogle ScholarPubMed
44. Matsumiya, N, Koehler, RC, Kirsch, JR, et al. Conjugated superoxide dismutase reduces extent of caudate injury after transient focal ischemia in cats. Stroke 1991;22:11931200.CrossRefGoogle ScholarPubMed
45. Kondo, T, Reaume, AG, Huang, T-T, et al. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 1997;17:41804189.CrossRefGoogle ScholarPubMed
46. Murakami, K, Kondo, T, Kawase, M, et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 1998;18:205213.CrossRefGoogle ScholarPubMed
47. Lei, B, Adachi, N, Arai, T. The effect of hypothermia on H2O2 production during ischemia and reperfusion: a microdialysis study in the gerbil hippocampus. Neurosci Lett 1997;222:9194.CrossRefGoogle ScholarPubMed
48. Malinski, T, Zhang, ZG, et al. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 1993;13:355358.CrossRefGoogle ScholarPubMed
49. Kader, A, Frazzini, VI, Solomon, RA, et al. Nitric oxide production during focal cerebral ischemia in rats. Stroke 1993;24:17091716.CrossRefGoogle ScholarPubMed
50. Keller, JN, Kindy, MS, Holtsberg, FW, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 1998;18:687697.CrossRefGoogle ScholarPubMed
51. Coeroli, L, Arnaud, RS, Plotkine, D, et al. Nitric oxide production and perivascular tyrosine nitration following focal ischemia in neonatal rat. J Neurochem 1998;70:25162525.CrossRefGoogle ScholarPubMed
52. Koppenol, WH. The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med 1998;25:385391.CrossRefGoogle ScholarPubMed