Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T12:40:04.110Z Has data issue: false hasContentIssue false

The Insular Cortex and the Pathophysiology of Stroke-Induced Cardiac Changes

Published online by Cambridge University Press:  18 September 2015

Stephen Oppenheimer*
Affiliation:
Department of Stroke and Aging, The John P. Robarts Research Institute; the Department of Clinical Neurological Sciences, University of Western Ontario, London; and the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore
*
Meyer 5–181, The Johns Hopkins Hospital, 600 N. Wolfe Street, Baltimore, MD. U.S.A. 21205
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the past fifty years considerable clinical evidence has accrued to demonstrate involvement of the cerebral cortex in cardiac function. Hemispheric stroke is often associated with electrocardiographic (ECG) evidence of cardiac repolarisation abnormalities. In addition strokes of all types are associated with specific pathological changes in the ventricular myocardium (myocytolysis). These effects are not attributable to concomitant cardiac ischemic disease in the majority of cases. The insular cortex has recently been shown to contain a site of cardiac representation. Prolonged stimulation of this region in the rat produces ECG and cardiac pathological changes similar to those observed after human stroke. It is suggested that middle cerebral artery stroke in certain cases either directly or indirectly leads to insular disinhibition, and increased autonomic activity represented by cardiac changes which significantly influence prognosis.

Type
Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1992

References

1.Aschenbrenner, R, Bodechtel, G.Ueber EKG veranderungen bei Himtumorkranken. Klinische Wochenschrift 1983; 17: 298302.CrossRefGoogle Scholar
2.Byer, E, Ashman, R, Toth, LA.Electrocardiogram with large upright T waves and long Q-T intervals. Am Heart J 1947; 33: 796799.CrossRefGoogle ScholarPubMed
3.Neuberger, K.Ueber die Herzmuskelveraenderungen bei Epileptikern und ihre Bezichungen zur Angina pectoris. Frankfurter Zeitschrift Pathologie 19833; 46: 1442.Google Scholar
4.Burch, GE, Meyers, R, Abildskov, JA.A new electrocardiographic pattern observed in cerebrovascular accidents. Circulation 1954; 9:719723.CrossRefGoogle ScholarPubMed
5.Fentz, V, Gormsen, J.Electrocardiographic patterns in patients with cerebrovascular accidents. Circulation 1962; 25: 2228.CrossRefGoogle ScholarPubMed
6.Stern, S, Lavy, S, Carmon, A, Herishianu, Y.Electrocardiographic patterns in hemorrhagic stroke. J Neurol Sci 1968; 8: 6167.Google Scholar
7.Dimant, J, Grob, D.Electrocardiographic changes and myocardial damage in patients with acute cerebrovascular accidents. Stroke 1977; 8: 448455.CrossRefGoogle ScholarPubMed
8.Goldstein, DS.The electrocardiogram in stroke: relationship to pathophysiological type and comparison with prior tracings. Stroke 1979; 10: 253259.CrossRefGoogle ScholarPubMed
9.Cropp, GJ, Manning, GW.Electrocardiographic changes simulating myocardial ischemia and infarction associated with spontaneous intracranial hemorrhage. Circulation 1960; 22: 2538.Google ScholarPubMed
10.Lavy, S, Yaar, I, Melamed, E, Stern, S.The effect of acute stroke on cardiac functions as observed in an intensive stroke care unit. Stroke 1974; 5:775780.Google Scholar
11.Verrier, RL.Neural factors and ventricular electrical instability. In: Kulbertus, HE, and Wellens, HJ, eds. Sudden Death. Boston: Martinus Nijhoff 1980: 137155.Google Scholar
12.Schwartz, P, Stone, HL.Unilateral stellectomy and sudden death. In: Neural Mechanisms in Cardiac Arrhythmias. Schwartz, P, Brown, A, Malliani, A, Zanchetti, A, eds. New York: Raven Press 1978: 107122.Google Scholar
13.Stober, T, Anstatt, TH, Sen, S, Schimrigk, K, Jager, H.Cardiac arrhythmias in subarachnoid hemorrhage. Acta Neurochir 1988; 93: 3744.CrossRefGoogle Scholar
14.Cruickshank, JM, Neil-Dwyer, G, Brice, J.Electrocardiographic changes and their prognostic significance in subarachnoid hemorrhage. J Neurol Neurosurg Psychiatry 1974; 37: 755759.CrossRefGoogle Scholar
15.Silver, F, Norris, JW, Lewis, A, Hachinski, VC.Early mortality following stroke: a prospective review. Stroke 1984; 15: 492496.CrossRefGoogle ScholarPubMed
16.Norris, J, Hachinski, V, Myers, M, et al. Serum cardiac enzymes in stroke. Stroke 1979; 10: 548553.CrossRefGoogle ScholarPubMed
17.Greenhoot, JH, Reichenbach, DD.Cardiac injury and subarachnoid hemorrhage, a clinical, pathological, and physiological correlation. J Neurosurg 1969; 30: 521531.CrossRefGoogle ScholarPubMed
18.Smith, RP, Tomlinson, BE.Subendocardial hemorrhages associated with intracranial lesions. J Pathol Bact 1954; 68: 327334.CrossRefGoogle ScholarPubMed
19.Kolin, A, Kvasnicka, J.Pseudoinfarction pattern of the QRS complex in experimental cardiac hypoxia induced by noradrenalin. Cardiologia 1963; 43: 362370.CrossRefGoogle ScholarPubMed
20.Szakas, J, Cannon, A.L-norepinephrine myocarditis. Am J Clin Pathol 1958; 30:425434.Google Scholar
21.Myers, M, Norris, JW, Hachinski, VC.Plasma norepinephrine stroke. Stroke 1981; 12:200204.CrossRefGoogle ScholarPubMed
22.Norris, JW, Froggatt, GM, Hachinski, VC.Cardiac arrhythmias in acute stroke. Stroke 1978; 4: 392396.CrossRefGoogle Scholar
23.Ueda, H.Arrhythmias produced by cerebral stimulation. Jpn Circ J 1962; 26: 225230.CrossRefGoogle ScholarPubMed
24.Oppenheimer, SM.The insular cortex and the control of cardiac rhythm. Thesis. Faculty of Physiological Sciences, University of Oxford, submitted.Google Scholar
25.Berthier, M, Starkstein, S, Leiguarda, R.Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 1988; 24: 4149.CrossRefGoogle ScholarPubMed
26.Ruggiero, DA, Mraovitch, S, Granata, AR, Anwar, M, Reis, DJ.A role of insular cortex in cardiovascular function. J Comp Neurol 1987; 257: 189207.CrossRefGoogle ScholarPubMed
27.Yasui, Y, Breder, CD, Saper, CB, Cechetto, DF.Autonomic responses and efferent pathways from the insular cortex in the rat. J Comp Neurol 1990; 303:355374.CrossRefGoogle Scholar
28.Cechetto, DF, Saper, CB.Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J Comp Neurol 1987; 262:2745.Google ScholarPubMed
29.Kaada, B.Somatomotor, autonomic and electrocorticographic responses to electrical stimulation of rhinencephalic and other structures in primates, cat and dog. Acta Physiol Scand 1951: 24 (Suppl. 83): 1285.Google Scholar
30.Oppenheimer, SM, Cechetto, DF.Cardiac chronotropic organization of the rat insular cortex. Brain Res 1990; 533: 6672.Google ScholarPubMed
31.Oppenheimer, SM, Wilson, JX, Guiraudon, C, Cechetto, DF.Insular cortex stimulation produces lethal cardiac arrhythmias: a mechanism of sudden death? Brain Res 1991; 550: 115121.Google ScholarPubMed
32.Cechetto, DF, Chen, SJ.Subcortical sites mediating sympathetic responses from insular cortex in rats. Am J Physiol 1990; 258 (Regulatory Integrative Comp Physiol 27): R245-R255.Google ScholarPubMed
33.Stoney, JD, Thompson, WD, Asanuma, H.Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulation current. J Neurophysiol 1968; 31: 659669.CrossRefGoogle Scholar
34.Cain, DP, Raithby, A, Corcoran, ME.Urethane anesthesia blocks the development and expression of kindled seizures. Life Sci 1989: 44: 12011206.CrossRefGoogle ScholarPubMed
35.Mesulam, M-M, Mufson, EJ.Insula of the old world monkey I: architectonics in the insulo-orbito-temporal component of the paralimbic brain. J Comp Neurol 1982; 212: 122.CrossRefGoogle ScholarPubMed
36.Mesulam, M-M, Mufson, EJ.Insula of the old world monkey 111: efferent cortical output and comments on function. J Comp Neurol 1982; 212:3852.CrossRefGoogle Scholar