Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T22:58:45.078Z Has data issue: false hasContentIssue false

Mechanisms of Tumor-Associated Edema: A Review

Published online by Cambridge University Press:  18 September 2015

Rolando F. Del Maestro*
Affiliation:
Brain Research Laboratories, Experimental Research Unit, Department of Clinical Neurological Sciences, University of Western Ontario, London
Joseph F. Megyesi
Affiliation:
Brain Research Laboratories, Experimental Research Unit, Department of Clinical Neurological Sciences, University of Western Ontario, London
Catherine L. Farrell
Affiliation:
Brain Research Laboratories, Experimental Research Unit, Department of Clinical Neurological Sciences, University of Western Ontario, London
*
Brain Research Laboratories, Victoria Hospital, 375 South Street, London, Ontario, Canada N6A 4G5
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An understanding of the mechanisms responsible for tumor-associated edema involves the elucidation of the role played by a number of intra-related processes. These include (i) the permeability of new tumor microvessels that are associated with tumor angiogenesis; (ii) alterations in microvascular permeability due to factors secreted by tumor cells; (iii) immunological mechanisms and (iv) increased microvessel permeability associated with inflammation. The rationale for a role for inflammatory processes in tumor-associated edema has been outlined and the role of non-steroidal anti-inflammatory drugs in modulating experimental and human tumor-associated edema has been explored.

Résumé:

RÉSUMÉ:

La compréhension des mécanismes responsables de l'oedème associé à des tumeurs implique Pélucidation du rôle de certains processus inter-reliés. Ce sont (I) la perméabilité des nouveaux microvaisseaux de la tumeur qui sont associés à l'angiogénèse tumorale; (II) les altérations de la perméabilité microvasculaire due à des facteurs sécrétés par les cellules tumorales; (III) des mécanismes immunologiques et (IV) une perméabilité accrue des microvaisseaux associée à l'inflammation. Nous justifions le rôle de processus inflammatoires dans l'oedème associé aux tumeurs et nous explorons le rôle des anti-inflammatoires non-stéroïdiens dans la modulation de l'oedème associé aux tumeurs, dans le contexte expérimental et humain.

Type
Neurosurgical Symposium - William S. Keith, Visiting Professorship in Neurosurgery
Copyright
Copyright © Canadian Neurological Sciences Federation 1990

References

REFERENCES

1. Farrell, CL, Stewart, PA, Del Maestro, RF. A new rat glioma model in rat: The C6 spheroid implantation technique, permeability and vascular characterization. J Neuro-Oncol 1987; 4: 403415.CrossRefGoogle ScholarPubMed
2. Megyesi, JF, Del Maestro, RF. Nuclear magnetic resonance in the investigation of cerebral tumors and cerebral edema: a clue to the cell alterations that may affect the distribution of water. Biochem Cell Biol 1988; 66: 11001109.CrossRefGoogle Scholar
3. Barkowsky, HM. Peritumoral edema. Prog Exp Tumor Res 1984;27: 179190.CrossRefGoogle Scholar
4. Megyesi, JF, Del Maestro, RF. Nuclear magnetic resonance studies of human cerebral tumors. Can J Neurol Sci 1988; 15: 225.Google Scholar
5. Kelly, PJ, Duport-Daumas, C, Kispert, DB, et al. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 1987; 66: 865874.CrossRefGoogle ScholarPubMed
6. Folkman, J. Angiogenesis. In: Jaffe, EA, ed. Angiogenesis. The Hague: Martin Nijhoff 1984; 412428.Google ScholarPubMed
7. Hardman, J. The angioarchitecture of the gliomata. Brain 1940; 63: 91118.CrossRefGoogle Scholar
8. Brem, SS, Cotran, RS, Folkman, J. Angiogenesis in brain tumors: A quantitative histological study. Surg Forum 1974; 25: 428464.Google Scholar
9. Stewart, PA, Hayakawa, K, Hayakawa, E, et al. A quantitative study of blood brain barrier permeability ultrastructure in a new rat glioma model. Acta Neuropathol (Beri) 1985; 67: 96102.CrossRefGoogle Scholar
10. Coomber, BD, Stewart, PA, Hayakawa, K, et al. Quantitative mor-phology of human glioblastoma multiforme microvessels: Structural basis of blood brain barrier defect. J Neuro-Oncol 1987; 5: 299307.CrossRefGoogle Scholar
11. Stewart, PA, Magliocco, M, Hayakawa, K, et al. A quantitative anal-ysis of blood brain barrier ultrastructure in the aging human. Microvasc Res 1987; 33: 270282.CrossRefGoogle Scholar
12. Coomber, BL, Stewart, PA, Hayakawa, EM, et al. A quantitative assessment of microvessel ultrastructure in C6 astrocytoma spheroids transplanted to brain and to Muscle. J Neuropathol Exp Neurol 1988; 47:2940.CrossRefGoogle Scholar
13. Stewart, PA, Hayakawa, K, Farrell, CL, et al. Quantitative study of microvessel ultrastructure in human peritumoral brain tissue. J Neurosurg 1987; 67: 697705.CrossRefGoogle ScholarPubMed
14. Maiuri, F, Gangem, M, Cirillo, S. Cerebral edema associated with meningiomas. Surg Neurol 1987; 27: 6468.CrossRefGoogle ScholarPubMed
15. Hamprecht, B, Jaffe, BM, Philpott, GW. Prostaglandin production by neuroblastoma, glioma and fibroblast cell lines; stimulation by N6, O21-dibutyryl adenosine 31:5-cyclic monophosphate. FEBS Lett 1973; 36: 193198.CrossRefGoogle Scholar
16. Cooper, C, Jones, HG, Weller, RO, et al. Production of prostaglandins and thromboxane by isolated cells from intracranial tumors. J Neurol Neurosurg Psychiatry 1984; 47: 579584.CrossRefGoogle Scholar
17. Ohnishi, T, Shapiro, WR. Vascular permeability factors produced by brain tumors: Possible role in peritumoral edema. Abstract J Neuro-Oncol 1987; 5: 179.Google Scholar
18. Bruce, JW, Criscuolo, GR, Merrill, MJ, et al. Vascular permeability induced by a protein of malignant brain tumors: Inhibition by dexamethasone. J Neurosurg 1987; 67: 880884.CrossRefGoogle ScholarPubMed
19. Criscuolo, GR, Merrill, MJ, Oldfield, EH. Further characterization of malignant glioma-derived vascular permeability factor. J Neurosurg 1988; 69: 254262.CrossRefGoogle ScholarPubMed
20. Chiu, KM, Harris, JE, Kroin, JS, et al. The immunological response of Wistar rats to the intracranially implanted C6 glioma cell lines. J Neuro-Oncol 1983; 1: 365372.CrossRefGoogle Scholar
21. Palma, L, Moschese, V, Galli, E, et al. Immunological studies in patients with central nervous system tumors. J Neuro-Oncol 1987; 5: 2935.CrossRefGoogle ScholarPubMed
22. Fontana, A, Kristensen, F, Dubs, R, et al. Production of prostaglandin E and an interleukin-1 -like factor by cultured astrocytes and C6 glioma cells. J Immunol 1982; 129: 24132419.Google Scholar
23. Lauro, GM, Di Lorenzo, N, Grossi, M, et al. Prostaglandin E2 as an immunomodulating factor released in vitro by human glioma cells. Acta Neuropathol 1986; 69: 278282.CrossRefGoogle ScholarPubMed
24. Fontana, A, Hengartner, H, de Tribolet, N, et al. Glioblastoma cells release interleukin-1 and factors inhibiting interleukin-2-mediat-ed effects. J Immunol 1984; 132: 18371844.Google ScholarPubMed
25. Jacobs, SK, Parham, CW, Holcomb, B, et al. Lymphokine activated killer (LAK) cell mediated killing of human glioma: Effect of pretreating glioma with various membrane modifying agents. J Neuro-Oncol 1987; 5: 510.CrossRefGoogle ScholarPubMed
26. Barba, D, Saris, SC, Holder, C, et al. Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J Neurosurg 1989; 70: 175182.CrossRefGoogle ScholarPubMed
27. Saris, SC, Patronas, NJ, Rosenberg, SA, et al. The effect of intra-venous interleukin-2 on brain water content. J Neurosurg 1989; 71: 169174.CrossRefGoogle Scholar
28. Shinonaga, M, Chang, CC, Suzuki, N, et al. Immunohistological evaluation of macrophage infiltrates in brain tumors. Correlation with peritumoral edema. J. Neurosurg. 1988; 68: 259265.CrossRefGoogle ScholarPubMed
29. Del Maestro, RF. An approach to free radicals in medicine and biol-ogy. Acta Physiol Scand Suppl 1980; 492: 153168.Google Scholar
30. Del Maestro, RF. Free radical injury during inflammation. In Armstrong, D, Sohal, RS, Cutler, RG, Slater, TF, eds. Free Radicals in Molecular Biology, Aging and Disease. New York: Raven Press 1984: 87101.Google Scholar
31. Werns, SW, Lucchesi, BR. Leukocytes, oxygen radicals and myocar-dial injury due to ischemia and reperfusion. Free Rad Biol Med 1987; 4:3137.CrossRefGoogle Scholar
32. Weiss, SJ. Oxygen, ischemia and inflammation. Acta Physiol Scand Suppl 1986; 548: 937.Google ScholarPubMed
33. Svensjo, E, Arfors, KE, Arturson, G, et al. The hamster cheek pouch preparation as a model for studies of macromolecular permeability of the microvasculature. Uppsala J Med Sci 1978; 83: 7179.CrossRefGoogle ScholarPubMed
34. Black, KL, Hoff, JT, McGillicuddy, JE, et al. Increased leukotriene C4 and vasogenic edema surrounding brain tumors in humans. Ann Neurol 1986; 19:592595.CrossRefGoogle ScholarPubMed
35. Moskowitz, MA, Kiwak, KJ, Hekimian, K, et al. Synthesis of com-pounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion. Science 1984; 224: 886889.CrossRefGoogle Scholar
36. Abdel-Halim, MS, Sjoquist, B, Anggard, E. Inhibition of prostaglandin synthesis in rat brain.Acta Pharmacol Toxicol 1978;43:266272.CrossRefGoogle ScholarPubMed
37. Reichman, HR, Farrell, CL, Del Maestro, RF. Effects of steroids and nonsteroidal anti-inflammatory agents on vascular permeability in a rat glioma model. J Neurosurg 1986; 65: 233237.CrossRefGoogle Scholar
38. Farrell, CL, Megyesi, JF, Del Maestro, RF. The effect of ibuprofen on tumor growth in the C6 spheroid implantation glioma model. J Neurosurg 1988; 68: 925930.CrossRefGoogle ScholarPubMed
39. Del Maestro, RF, Bjork, J, Arfors, KE. Increase in microvascular per-meability induced by enzymatically generated free radicals. Part I. In vivo study. Microvas Res 1981; 22: 239254.CrossRefGoogle Scholar
40. Del Maestro, RF, Bjork, J, Arfors, KE. Increase in microvascular per-meability induced by enzymatically generated free radicals. Part II. Role of superoxide anion radicals, hydrogen peroxide and hydroxyl radical. Microvas Res 1981; 22: 255270.CrossRefGoogle Scholar
41. Kontos, HA. Oxygen radicals in cerebral vascular injury. Circ Res 1985; 57: 508516.CrossRefGoogle ScholarPubMed
42. Ley, K, Arfors, KE. Changes in macromolecular permeability by intravascular generation of oxygen derived free radicals. Microvas Res 1982; 24:2533.CrossRefGoogle ScholarPubMed
43. McCord, JM. Oxygen derived free radicals in post-ischemic tissue injury. N Engl J Med 1985; 312: 159163.Google Scholar
44. Halliwell, B. Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: The key role of superoxide dismutase. Cell Biol Int Rep 1978; 2: 113128.CrossRefGoogle ScholarPubMed
45. Braughler, JM, Pregenzer, JF, Chase, RL, et al. Novel 21-amino steroids as potent inhibitors of iron dependent lipid peroxidation. J Biol Chem 1987; 262: 1043810440.CrossRefGoogle ScholarPubMed
46. Hall, ED, Yonkers, PA. Attenuation of post-ischemic cerebral hypoperfusion by the 21-aminosteroid U74006F. Stroke 1988; 19: 340344.CrossRefGoogle Scholar
47. Hall, ED, Berry, KP, Braughler, JM. The 21-aminosteroid lipid per-oxidation inhibitor U74006F protects against cerebral ischemia in gerbils. Stroke 1988; 19: 9971002.CrossRefGoogle Scholar
48. Hall, ED, Yonkers, PA, McCall, JM, et al. Effects of the 21-aminos-teroid U740056F on experimental head injury in mice. J Neurosurg 1988; 68: 456461.CrossRefGoogle ScholarPubMed
49. Zuccarello, M, Anderson, DK. Protective effect of a 21-aminosteroid on the blood-brain barrier following subarachnoid hemorrhage in rats. Stroke 1989; 20: 367371.CrossRefGoogle ScholarPubMed
50. Megyesi, JF, Farrell, CL, Del Maestro, RF. Investigation of an inhibitor of lipid peroxidation (U74006F) on tumor growth and protein extravasation spheroid implantation model. J Neuro-Oncol. In Press.Google Scholar
51. Nakagawa, H, Groothius, DR, Owens, ES, et al. Dexamethasone effects on (125I) albumin distribution in experimental RG-2 gliomas and adjacent brain. J Cereb Blood Flow Metab 1987; 7: 687701.CrossRefGoogle ScholarPubMed
52. Selker, RG. Corticosteroids: Their effects on primary and metastatic brain tumors. In: Walker, MW, ed. Oncology of the Nervous System. The Hague: Martin Nijhoff 1983; 167191.CrossRefGoogle Scholar
53. Saul, TG, Ducker, TB, Saleman, M, et al. Steroids in severe head injury: A prospective randomized clinical trial. J Neurosurg 1981; 54: 596600.CrossRefGoogle ScholarPubMed
54. Norris, JW. Steroid therapy in acute cerebral infarction. Arch Neurol 1976; 33: 6971.CrossRefGoogle ScholarPubMed
55. Poungvarin, N, Bhoopat, W, Viriyauejakul, A, et al. Effects of dex-amethasone in primary supratentorial intracerebral hemorrhage. N Engl J Med 1987; 316: 12291233.CrossRefGoogle Scholar
56. Schroeder, KA, McKeever, PE, Schaberg, DR, et al. Effect of dexam-ethasone on experimental brain abscess. J Neurosurg 1987; 66: 264269.CrossRefGoogle Scholar
57. Lebel, MH, Freij, BJ, Syrogiannopoulos, GA, et al. Dexamethasone therapy for bacterial meningitis. Results of two double-blind, placebo controlled trials. N Engl J Med 1988; 319: 964971.CrossRefGoogle ScholarPubMed
58. Fishman, RA. Brain edema. N Engl J Med 1975; 293: 706.CrossRefGoogle ScholarPubMed
59. Weissman, DE, Dufer, D, Vogel, V, et al. Corticosteroid toxicity in neuro-oncology patients. J Neuro-Oncol 1987; 5: 125128.CrossRefGoogle ScholarPubMed
60. Ackerman, NB, Makohon, S. The effects of steroidal and nons-teroidal anti-inflammatory agents on vascular permeability in intrahepatic tumors. Int J Microcirc Clin Exp 1982; 1: 253.Google Scholar
61. Siegal, T, Siegal, TZ, Shapira, Y, et al. Indomethacin and dexametha-sone treatment in experimental neoplastic spinal cord compression: Part 1. Effect on water content and specific gravity. Neurosurg 1988; 22: 328334.CrossRefGoogle ScholarPubMed
62. Siegal, T, Shohami, E, Shapira, Y, et al. Indomethacin and dexam-ethasone treatment in experimental neoplastic spinal cord compression: Part 2. Effect on edema and prostaglandin synthesis. Neurosurg 1988; 22: 334338.CrossRefGoogle Scholar
63. Weismann, DE, Stewart, C. Experimental drug therapy of peritu-moral brain edema. J Neuro-Oncol 1988; 339342.Google Scholar
64. Del Maestro, RF, Mattar, AG. The influence of ibuprofen on patients with peritumoral edema. Can J Neurol Sci 1988; 15: 227.Google Scholar
65. Farrell, CL. The microcirculation in a glioma model. Ph.D. Thesis. University of Western Ontario, 1988.Google Scholar
66. Durward, Q, Del Maestro, RF, Amacher, Al, et al. The influence of systemic arterial pressure and intracranial pressure on the development of cerebral vasogenic edema. J Neurosurg 1983; 59: 803809.CrossRefGoogle ScholarPubMed
67. Vriesendorp, FJ, Pasternak, JF, Groothius, DR. The effect of systemic arterial hypertension blood-to-tissue transplant in experimental gliomas. J Neuro-Oncol 1987; 5: 289297.CrossRefGoogle Scholar