Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T01:11:10.653Z Has data issue: false hasContentIssue false

Mild to Moderate Early Exercise Promotes Recovery from Cerebral Ischemia in Rats

Published online by Cambridge University Press:  02 December 2014

Shi-Uk Lee
Affiliation:
Department of Rehabilitation Medicine, Seoul National University Boramae Hospital, Sindaebang-Dong, Dongjak-Gu, Seoul
Dae-Yul Kim
Affiliation:
Department of Rehabilitation Medicine, University of Ulsan College of Medicine, Seoul Asan Medical Center, Songpa-Gu, Seoul
Sung-Hye Park
Affiliation:
Department of Pathology, Chongro-gu, Seoul, Seoul National University Hospital, Seoul, South Korea
Deok-Hyung Choi*
Affiliation:
Department of Rehabilitation Medicine, Chongro-gu, Seoul, Seoul National University Hospital, Seoul, South Korea
Hee-Won Park
Affiliation:
Department of Rehabilitation Medicine, Chongro-gu, Seoul, Seoul National University Hospital, Seoul, South Korea
Tai Ryoon Han
Affiliation:
Department of Rehabilitation Medicine, Chongro-gu, Seoul, Seoul National University Hospital, Seoul, South Korea
*
Department of Rehabilitation Medicine, University of Ulsan College of Medicine Seoul Asan Medical Center, 388-1, Pungnap-2dong, Songpa-Gu, Seoul, 138-736, South Korea
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

We examined the effects of various exercise intensities on recovery from middle cerebral artery occlusion (MCAO) in rats.

Methods:

First, we administered a 120-minute left MCAO to male Sprague-Dawley rats and randomly assigned them to one of four groups: no exercise (Group 1), mild exercise (Group 2), moderate exercise (Group 3), and severe exercise (Group 4). Then, we trained the rats for 30 min per day for one week or two weeks. We used a five-point neurological evaluation scale to measure neurological deficits 1-day, 4-days, 7-days, 10-days and 14-days after MCAO and measured infarct volume by use of 2% 2,3,4-triphenyltetrazolium chloride in exercised brains. We also performed immunohistochemistry analysis of the brain to observe reactive astrocytosis at the peri-infarct region.

Results:

Neurological examination indicated that Group 2 and 3 recovered better than Group 1 after one week and two weeks (p<0.05). Moreover, Group 2 and 3 had reduced brain infarct volume compared with Group 1 after one week (p<0.05). There were no significant differences between Group 4 and Group 1. The thickness of the peri-infarct astrocytosis was significantly reduced in Group 4 relative to Group 1 after one week. There was a significant negative correlation between the extent of reactive astrocytosis and neurological recovery (r= -0.648, p<0.01).

Conclusion:

This study demonstrates that mild to moderate exercise that begins soon after induced cerebral ischemia promotes recovery and that astrocytes may have an important role in the recovery process.

Résumé:

RÉSUMÉ:Objectif :

Nous avons étudié les effets de différentes intensités d’exercice sur la récupération après une occlusion de l’artère cérébrale moyenne (OACM) chez des rats.

Méthodes :

Nous avons d’abord procédé à une OACM gauche de 120 minutes chez des rats Sprague-Dawley mâles et nous les avons répartis au hasard entre quatre groupes : aucun exercice (groupe 1); exercice léger (groupe 2); exercice modéré (groupe 3) et exercice intensif (groupe 4). Nous leur avons ensuite fait subir un entraînement de 30 minutes par jour pendant 1 ou 2 semaines. Nous avons utilisé une échelle d’évaluation neurologique en cinq points pour mesurer les déficits neurologiques 1, 4, 7, 10 et 14 jours après l’OACM et nous avons mesuré le volume de l’infarctus au moyen du chlorure de 2,3,4- triphényltétrazolium à 2%. Nous avons procédé à des analyses immunohistochimiques du cerveau pour étudier l’astrocytose réactionnelle dans la region entourant l’infarctus.

Résultats :

L’examen neurologique a montré que les groupes 2 et 3 avaient mieux récupéré que le groupe 1 après une semaine et deux semaines (p < 0,05). De plus, chez les rats des groupes 2 et 3, le volume de l’infarctus était moindre que celui des rats du groupe 1 après une semaine (p < 0,05). Il n’y avait pas de différences significatives entre le groupe 4 et le groupe 1. L’épaisseur de l’astrocytose dans la zone entourant l’infarctus était significativement moindre dans le groupe 4 par rapport au groupe 1 après une semaine. Il existait une corrélation négative significative entre l’importance de l’astrocytose et la récupération neurologique (r = -0,648; (p < 0,01).

Conclusion :

Cette étude démontre que l’exercice d’intensité légère à modérée, commencé tôt après une ischémie cérébrale provoquée, favorise la récupération et qu’il est possible que les astrocytes jouent un role important dans le processus de récupération.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2009

References

1. Lambo, TA. Stroke-a worldwide health problem. Adv Neurol. 1979;25:13.Google Scholar
2. Ernst, E. A review of stroke rehabilitation and physiotherapy. Stroke. 1990;21:10815.Google Scholar
3. Stummer, W, Weber, K, Tranmer, B, Baethmann, A, Kempski, O. Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke. 1994;25:18629.Google Scholar
4. Ding, Y, Li, J, Lai, Q, Rafols, JA, Luan, X, Clark, J, et al. Motor balance and coordination training enhances functional outcome in rat with transient middle cerebral artery occlusion. Neuroscience. 2004;123:66774.CrossRefGoogle ScholarPubMed
5. Kim, MW, Bang, MS, Han, TR, Ko, YJ, Yoon, BW, Kim, JH, et al. Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain. Brain Res. 2005;1052:1621.Google Scholar
6. Richards, CL, Malouin, F, Wood-Dauphinee, S, Williams, JI, Bouchard, JP, Brunet, D. Task-specific physical therapy for optimization of gait recovery in acute stroke patients. Arch Phys Med Rehabil. 1993;74:61220.Google Scholar
7. Hesse, S, Bertelt, C, Jahnke, MT, Schaffrin, A, Baake, P, Malezic, M, et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke. 1995;26:97681.CrossRefGoogle ScholarPubMed
8. Johansson, BB, Ohlsson, AL. Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp Neurol. 1996;139:3227.Google Scholar
9. Ohlsson, AL, Johansson, BB. Environment influences functional outcome of cerebral infarction in rats. Stroke. 1995;26:6449.CrossRefGoogle ScholarPubMed
10. Humm, JL, Kozlowski, DA, James, DC, Gotts, JE, Schallert, T. Usedependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res. 1998;783:28692.Google Scholar
11. Kozlowski, DA, James, DC, Schallert, T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci. 1996;16:477686.CrossRefGoogle ScholarPubMed
12. Yang, YR, Wang, RY, Wang, PS, Yu, SM. Treadmill training effects on neurological outcome after middle cerebral artery occlusion in rats. Can J Neurol Sci. 2003;30:2528.Google Scholar
13. Yang, YR, Wang, RY, Wang, PS. Early and late treadmill training after focal brain ischemia in rats. Neurosci Lett. 2003;339:914.Google Scholar
14. Longa, EZ, Weinstein, PR, Carlson, S, Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:8491.Google Scholar
15. Garcia, JH, Wagner, S, Liu, KF, Hu, XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26:62734; discussion 35.Google ScholarPubMed
16. Menzies, SA, Hoff, JT, Betz, AL. Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery. 1992;31:1006; discussion 6-7.Google Scholar
17. Swanson, RA, Morton, MT, Tsao-Wu, G, Savalos, RA, Davidson, C, Sharp, FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 1990;10:2903.Google Scholar
18. Berne, RM, Levy, MN. Physiology. 3rd ed. St. Louis: Mosby Year Book; 1993.Google Scholar
19. Auer, RN. Non-pharmacologic (physiologic) neuroprotection in the treatment of brain ischemia. Ann N Y Acad Sci. 2001;939:27182.Google Scholar
20. Ide, K, Horn, A, Secher, NH. Cerebral metabolic response to submaximal exercise. J Appl Physiol. 1999;87:16048.CrossRefGoogle ScholarPubMed
21. van Praag, H, Kempermann, G, Gage, FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:26670.Google Scholar
22. Kleim, JA, Cooper, NR, VandenBerg, PM. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res. 2002;934:16.CrossRefGoogle Scholar
23. Ding, Y, Li, J, Luan, X, Ding, YH, Lai, Q, Rafols, JA, et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 2004;124:58391.CrossRefGoogle ScholarPubMed
24. Hambrecht, R, Wolf, A, Gielen, S, Linke, A, Hofer, J, Erbs, S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342:45460.Google Scholar
25. Ginsberg, MD, Sternau, LL, Globus, MY, Dietrich, WD, Busto, R. Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab Rev. 1992;4:189225.Google ScholarPubMed
26. Borer, KT, Bestervelt, LL, Mannheim, M, Brosamer, MB, Thompson, M, Swamy, U, et al. Stimulation by voluntary exercise of adrenal glucocorticoid secretion in mature female hamsters. Physiol Behav. 1992;51:7138.Google Scholar
27. Smith-Swintosky, VL, Pettigrew, LC, Sapolsky, RM, Phares, C, Craddock, SD, Brooke, SM, et al. Metyrapone, an inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures. J Cereb Blood Flow Metab. 1996;16:58598.Google Scholar
28. DeVries, AC, Joh, HD, Bernard, O, Hattori, K, Hurn, PD, Traystman, RJ, et al. Social stress exacerbates stroke outcome by suppressing Bcl-2 expression. Proc Natl Acad Sci USA. 2001;98:118248.Google Scholar
29. Vanderwolf, CH, Cain, DP. The behavioral neurobiology of learning and memory: a conceptual reorientation. Brain Res Brain Res Rev. 1994;19:26497.Google Scholar
30. Qu, M, Mittmann, T, Luhmann, HJ, Schleicher, A, Zilles, K. Long-term changes of ionotropic glutamate and GABA receptors after unilateral permanent focal cerebral ischemia in the mouse brain. Neuroscience. 1998;85:2943.Google Scholar
31. Veras-Silva, AS, Mattos, KC, Gava, NS, Brum, PC, Negrao, CE, Krieger, EM. Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. Am J Physiol. 1997;273:H262731.Google Scholar
32. Coven, DL, Hu, X, Cong, L, Bergeron, R, Shulman, GI, Hardie, DG, et al. Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am J Physiol Endocrinol Metab. 2003;285:E62936.Google Scholar
33. Kinoshita, S, Yano, H, Tsuji, E. An increase in damaged hepatocytes in rats after high intensity exercise. Acta Physiol Scand. 2003;178:22530.Google Scholar
34. Kim, YP, Kim, HB, Jang, MH, Lim, BV, Kim, YJ, Kim, H, et al. Magnitude- and time-dependence of the effect of treadmill exercise on cell proliferation in the dentate gyrus of rats. Int J Sports Med. 2003;24:1147.Google Scholar
35. Mabuchi, T, Kitagawa, K, Ohtsuki, T, Kuwabara, K, Yagita, Y, Yanagihara, T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke. 2000;31:173543.CrossRefGoogle ScholarPubMed
36. Liberto, CM, Albrecht, PJ, Herx, LM, Yong, VW, Levison, SW. Proregenerative properties of cytokine-activated astrocytes. J Neurochem. 2004;89:1092100.Google Scholar
37. Aschner, M. Astrocytic functions and physiological reactions to injury: the potential to induce and/or exacerbate neuronal dysfunction-a forum position paper. Neurotoxicology. 1998;19:717; discussion 378.Google ScholarPubMed
38. Lin, JH, Weigel, H, Cotrina, ML, Liu, S, Bueno, E, Hansen, AJ, et al. Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci. 1998;1:494500.Google Scholar
39. Siushansian, R, Bechberger, JF, Cechetto, DF, Hachinski, VC, Naus, CC. Connexin43 null mutation increases infarct size after stroke. J Comp Neurol. 2001;440:38794.Google Scholar
40. Li, J, Ding, YH, Rafols, JA, Lai, Q, McAllister, JP, 2nd, Ding, Y. Increased astrocyte proliferation in rats after running exercise. Neurosci Lett. 2005;386:1604.Google Scholar
41. Komitova, M, Perfilieva, E, Mattsson, B, Eriksson, PS, Johansson, BB. Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat. J Cereb Blood Flow Metab. 2002;22:85260.Google Scholar
42. Alonso, G. Proliferation of progenitor cells in the adult rat brain correlates with the presence of vimentin-expressing astrocytes. Glia. 2001;34:25366.Google Scholar
43. Song, H, Stevens, CF, Gage, FH. Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002;417:3944.CrossRefGoogle ScholarPubMed
44. Nakase, T, Fushiki, S, Naus, CC. Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke. 2003;34:198793.CrossRefGoogle ScholarPubMed