Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:48:03.397Z Has data issue: false hasContentIssue false

Nestin, A New Marker, Expressed in Müller Cells Following Retinal Injury

Published online by Cambridge University Press:  02 December 2014

Liping Xue*
Affiliation:
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou Deparment of Ophthalmology, Yunnan NO.2 Provincial People's Hospital
Peng Ding
Affiliation:
Department of Neurosurgery, First Affiliated Hospital of Kunming Medical College, Kunming, PR China
Libo Xiao
Affiliation:
Deparment of Ophthalmology, Yunnan NO.2 Provincial People's Hospital
Min Hu
Affiliation:
Deparment of Ophthalmology, Yunnan NO.2 Provincial People's Hospital
Zhulin Hu
Affiliation:
Deparment of Ophthalmology, Yunnan NO.2 Provincial People's Hospital
*
Department of Ophthalmology,, unnan NO.2 Provincial People’s Hospital, 176 Qingnian Rd, Kunming, PR China 650031.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Purpose:

To investigate whether nestin would be a useful marker for retinal injury and also to ascertain a better understanding of the roles of Müller cells in the injured retina by the use of damaged rat retina.

Methods:

A total of 33 adult female Wistar rats were used in this study. Three were used as controls and the remaining as retinal injury modes (6 for hypoxia; 15 for experimental glaucoma and 9 for optic nerve transection). Double immunofluorescence labeling was carried out between nestin and glutamine synthetase (GS), and between glial fibrillary acidic protein (GFAP) and GS antisera in normal and pathological retinae.

Results:

The results showed that there were no nestin nor GFAP staining in mature Müller cells of the normal retina. A major finding was that nestin expression was induced in Müller cells subjected to hypoxia, glaucoma and optic nerve transection.

Conclusions:

These results suggest that nestin as well as GFAP (even more sensitive than GFAP) are useful and reliable biomarkers for retinal damage. The more intense expression of nestin, GFAP and GS in the end-feet of Müller cells suggest that they may help to maintain the retinal structural integrity and to enhance functional recovery in various retinal diseases.

Résumé:

RÉSUMÉ:Objectif:

Le but de l’étude était d’examiner si la nestine pourrait constituer un marqueur utile de lésion rétinienne et d’acquérir une meilleure compréhension des rôles des cellules de Müller dans la rétine qui a subi une lésion en utilisant la rétine de rat endommagée comme modèle.

Méthodes:

Trente–trois ratsWistar femelles ont été utilisés dans cette étude. Trois rats ont servi de contrôles et 30 ont servi de modèles de lésions rétiniennes (6 de lésion par hypoxie, 15 de glaucoma expérimental et 9 de section du nerf optique). Un double marquage immunofluorescent a été réalisé dans la rétine normale et la rétine pathologique, d’une part pour la nestine et la glutamine synthétase (GS) et d’autre part pour la protéine acide fibrillaire gliale (GFAP) et l’antisérum GS.

Résultats:

Il n’y avait pas de nestine ou de GFAP dans les cellules de Müller matures de la rétine normale. L’expression de la nestine était induite dans les cellules de Müller soumises à l’hypoxie, au glaucome et à la section du nerf optique.

Conclusions:

Ces résultats suggèrent que la nestine, qui est plus sensible que la GFAP, de même que la GFAP sont des marqueurs utiles et fiables du dommage rétinien. L’expression plus intense de la nestine, de la GFAP et de la GS dans les pieds astrocytaires des cellules gliales de Müller suggère qu’il est possible qu’elles aident à maintenir l’intégrité de la structure rétinienne et à favoriser la guérison fonctionnelle dans plusieurs maladies rétiniennes.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Lendahl, U, Zimmerman, LB, McKay, RD. CNS stem cells express a new class of intermediate filament protein. Cell.1990; 60(4): 58595.Google Scholar
2. Kawaguchi, A, Miyata, T, Sawamoto, K, Takashita, N, Murayama, A, Akamatsu, W, et al. Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci. 2001; 17(2):25973.Google Scholar
3. Brook, GA, Perez-Bouza, A, Noth, J, Nacimiento, W. Astrocytes reexpress nestin in deafferented target territories of the adult rat hippocampus. Neuroreport. 1999; 10(5):100711.Google Scholar
4. Clarke, SR, Shetty, AK, Bradley, JL, Turner, DA. Reactive astrocytes express the embryonic intermediate neurofilament nestin. Neuroreport. 1994; 5(15):18858.CrossRefGoogle ScholarPubMed
5. Frisen, J, Johansson, CB, Torok, C, Risling, M, Lendahl, U. Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol. 1995; 131(2):45364.Google Scholar
6. Fischer, AJ, Omar, G. Transitin, a nestin-related intermediate filament, is expressed by neural progenitors and can be induced in Müller glia in the chicken retina. J Comp Neurol.2005; 484 (1):114.Google Scholar
7. Walcott, JC, Provis, JM. Müller cells express the neuronal progenitor cell marker nestin in both differentiated and undifferentiated human foetal retina. Clin Exp Ophthalmol. 2003; 31(3):2469.CrossRefGoogle ScholarPubMed
8. Xue, LP, Lu, J, Cao, Q, Kaur, C, Ling, EA. Nestin expression in Müller glial cells in postnatal rat retina and its upregulation following optic nerve transection. Neuroscience. 2006; 143(1):11727.CrossRefGoogle ScholarPubMed
9. Ooto, S, Akagi, T, Kageyama, R, Akita, J, Mandai, M, Honda, Y, et al. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA.2004; 101 (37):136549.Google Scholar
10. Kohno, H, Sakai, T, Kitahara, K. Induction of nestin, Ki-67, and cyclin D1 expression in Müller cells after laser injury in adult rat retina. Graefes Arch Clin Exp Ophthalmol. 2006; 244(1):905.CrossRefGoogle ScholarPubMed
11. Zeng, XX, Ng, YK, Ling, EA. Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci. 2000; 17(3):46371.Google Scholar
12. Wang, X, Tay, SS, Ng, YK. An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Exp Brain Res. 2000; 132(4):47684.CrossRefGoogle ScholarPubMed
13. Zahir, T, Klassen, H, Young, MJ. Effects of ciliary neurotrophic factor on differentiation of late retinal progenitor cells. Stem Cells. 2005; 23(3):42432.CrossRefGoogle ScholarPubMed
14. Grosche, J, Hartig, W, Reichenbach, A. Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and Bcl-2 protooncogene protein by Müller (glial) cells in retinal light damage of rats. Neurosci Lett. 1995; 185(2):11922.Google Scholar
15. Chen, YN, Yamada, H, Mao, W, Matsuyama, S, Aihara, M, Araie, M. Hypoxia-induced retinal ganglion cell death and the neuroprotective effects of beta-adrenergic antagonists. Brain Res. 2007; 1148:2837.CrossRefGoogle ScholarPubMed
16. Xue, LP, Lu, J, Cao, Q, Hu, S, Ding, P, Ling, EA. Müller glial cells express nestin coupled with glial fibrillary acidic protein in experimentally induced glaucoma in the rat retina. Neuroscience. 2006; 139(3):72332.CrossRefGoogle ScholarPubMed
17. Kaur, C, Sivakumar, V, Singh, G, Singh, J, Ling, EA. Response of Purkinje neurons to hypobaric hypoxic exposure as shown by alteration in expression of glutamate receptors, nitric oxide synthases and calcium binding proteins. Neuroscience. 2005; 135(4):121729.Google Scholar
18. Sarup, V, Patil, K, Sharma, SC. Ciliary neurotrophic factor and its receptors are differentially expressed in the optic nerve transected adult rat retina. Brain Res. 2004; 1013(2):1528.CrossRefGoogle ScholarPubMed
19. Bignami, A, Dahl, D. The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein. Exp Eye Res. 1979; 28(1):639.Google Scholar
20. Ekstrom, P, Sanyal, S, Narfstrom, K, Chader, GJ, Van Veen, T. Accumulation of glial fibrillary acidic protein in Müller radial glia during retinal degeneration, Invest Ophthalmol Vis Sci. 1988; 29(9):136371.Google Scholar
21. Merrill, JE. The role of microglial cells and astrocytes in pathology: introduction. Dev Neurosci 1994; 16:113.Google Scholar
22. Tropepe, V, Coles, BL, Chiasson, BJ, Horsford, DJ, Elia, AJ, Mclnnes, RR, et al. Retinal stem cells in the adult mammalian eye. Science. 2000; 287(5460):20326.Google Scholar
23. Osborne, NN, Ugarte, M, Chao, M, Chidlow, G, Bae, JH, Wood, JP, et al. Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol.1999; 43:S10228.CrossRefGoogle ScholarPubMed