Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T12:51:49.934Z Has data issue: false hasContentIssue false

Neuropsychology for Movement Disorders Neurosurgery

Published online by Cambridge University Press:  02 December 2014

Jean A. Saint-Cyr*
Affiliation:
Departments of Surgery (Neurosurgery) and Psychology, University , Network, University of Toronto; Morton and Gloria Shulman Movement Disorders Centre; and Toronto Western Research Institute, Toronto Western Hospital, Toronto, ON, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The neuropsychologist plays a crucial role in three phases of the neurosurgical treatment of movement disorder patients, namely screening, outcome evaluation and research. In screening patients, the differential diagnosis of dementia, impact of depression or other psychiatric conditions, and the influence of disease and medication-induced symptoms on cognitive performance must be determined. Postoperatively, systematic evaluations elucidate the cognitive costs or benefits of the procedure. The neuropsychologist is then able to provide feedback and counselling to the professional staff, patient and family to inform management strategies. Neuropsychologists also study alteration of cognitive processing due to lesions or stimulation, which, in tandem with functional imaging, shed light on plasticity in cortical and subcortical processing.

Résumé

RÉSUMÉ

Le neuropsychologue joue un rôcrucial dans trois phases du traitement neurochirurgical des patients préntant des dérdres du mouvement, soit dans le déstage, l’éluation des réltats et la recherche. Lors du déstage des patients, on doit préser le diagnostic difféntiel de la dénce, l’impact de la déession ou d’autres troubles psychiatriques, et l’influence de la maladie et des symptô mécamenteux sur la performance cognitive. En péode postopétoire, les éluations systétiques permettent d’éluer les coût les béfices cognitifs de l’intervention. Le neuropsychologue est alors en mesure de fournir des informations et des conseils au personnel professionnel, au patient et àa famille pour délopper des stratées de prise en charge approprié. Les neuropsychologues édient élement les perturbations du processus cognitif dues àes léons ou àa stimulation qui, de concert avec l’imagerie fonctionnelle, renseignent sur la plasticitées processus corticaux et sous-corticaux.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

1. Paulsen, JS, Zhao, H, Stout, JC, et al. Clinical markers of early disease in persons near onset of Huntington’s disease. Neurology 2001; 57(4): 658662.CrossRefGoogle ScholarPubMed
2. Albin, RL, Aldridge, JW, Young, AB, Gilman, S. Feline subthalamic nucleus neurons contain glutamate-like but not GABA-like or glycine-like immunoreactivity. Brain Res 1989; 491(1): 185188.CrossRefGoogle ScholarPubMed
3. Wichmann, T, DeLong, MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 1996; 6(6): 751758.CrossRefGoogle ScholarPubMed
4. Lang, AE, Lozano, AM. Parkinson’s disease – first of two parts. N Eng J Med 1998a; 339(15): 10441053.CrossRefGoogle ScholarPubMed
5. Schultz, W, Tremblay, L, Hollerman, JR. Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology 1998; 37: 421429.CrossRefGoogle ScholarPubMed
6. Gotham, AM, Brown, RG, Marsden, CD. ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 1988; 111(2): 299321.CrossRefGoogle ScholarPubMed
7. Pullman, SL, Watts, RL, Juncos, JL, et al. Dopaminergic effects on simple and choice reaction time performance in Parkinson’s disease. Neurology 1988; 38(2): 249254.CrossRefGoogle ScholarPubMed
8. Lange, KW, Robbins, TW, Marsden, CD, et al. L-dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 1992; 107(2–3): 394404.CrossRefGoogle ScholarPubMed
9. Malapani, C, Pillon, B, Dubois, B, Agid, Y. Impaired simultaneous cognitive task performance in Parkinson’s disease: a dopamine- related dysfunction. Neurology 1994; 44(2): 319326.CrossRefGoogle ScholarPubMed
10. Owen, A, Sahakian, B, Hodges, J, et al. Dopamine-dependent frontostriatal planning deficits in early Parkinson’s disease. Neuropsychology 1995; 9(1): 126140.CrossRefGoogle Scholar
11. Kulisevsky, J, Avila, A, Barbanoj, M, et al. Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson’s disease patients at different levodopa plasma levels. Brain 1996; 119(6): 21212132.Google Scholar
12. Malapani, C, Rakitin, B, Levy, R, et al. Coupled temporal memories in Parkinson’s disease: a dopamine-related dysfunction. J Cog Neuroscience 1998; 10(3): 316331.Google Scholar
13. Starr, PA, Vitek, JL, Bakay, RAE. Deep brain stimulation for movement disorders. Neurosurg Clin N Am 1998a; 9: 381402.Google Scholar
14. Lozano, AM, (Ed). Movement Disorder Surgery. Basel: Kargar, 2000.Google Scholar
15. Louw, DF, Burchiel, KJ. Ablative therapy for movement disorders. Complications in the treatment of movement disorders. Neurosurg Clin N Am 1998; 9: 367373.CrossRefGoogle ScholarPubMed
16. Wilkinson, SB, Tröster, AI. Surgical interventions in neurodegenerative disease: impact on memory and cognition. In: Tröster, AI, (Ed). Memory in Neurodegenerative Disease: Biological, Cognitive, and Clinical Perspectives. Cambridge, UK: Cambridge University Press, 1998: 362376.Google Scholar
17. Divac, I. Neostriatum and functions of the prefrontal cortex. Acta Neurobiol Exp (Warsaw) 1972; 32: 461477.Google Scholar
18. Rosvold, E. The frontal lobe system: cortical-subcortical relationships. Acta Neurobiol Exp (Warsaw) 1972; 32: 439460.Google Scholar
19. Bhatia, KP, Marsden, CD. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 1994; 117: 859876.CrossRefGoogle ScholarPubMed
20. Dubois, B, Defontaines, B, Deweer, B, Malapani, C, Pillon, B. Cognitive and behavioral changes in patients with focal lesions of the basal ganglia. Adv Neurol 1995; 65: 2942.Google Scholar
21. McFie, J. Psychological effects of stereotaxic operations for the relief of parkinsonian symptoms. J Mental Science 1960; 166: 15121517.CrossRefGoogle Scholar
22. Ricklan, M, Diller, L, Weiner, H, et al. Psychological studies on effects of chemosurgery of the basal ganglia in parkinsonism. I. Intellectual functioning. AMA Arch Gen Psychiatry 1960a; 2: 32/22–42/32.Google Scholar
23. Ricklan, M, Diller, L, Weiner, H. Psychological studies on effects of chemosurgery of the basal ganglia in parkinsonism. II. Aspects of personality. AMA Arch Gen Psychiatry, 1960b; 2: 71/267–79/275.Google Scholar
24. Kocher, U, Siegfried, J, Perret, E. Verbal and nonverbal learning ability of Parkinson patients before and after unilateral ventrolateral thalamotomy. App Neurophysiol 1982; 45: 311316.Google ScholarPubMed
25. Guridi, J, Lozano, AM. A brief history of pallidotomy. Neurosurgery 1998; 41: 11691183.Google Scholar
26. Parkinson, J. An Essay on the Shaking Palsy. London: Sherwood, Neely and Jones, 1817.Google Scholar
27. Taylor, AE, Saint-Cyr, JA, Lang, AE. Frontal lobe dysfunction in Parkinson’s disease: the cortical focus of neostriatal out flow. Brain 1986; 109(5): 845883.Google Scholar
28. Taylor, AE, Saint-Cyr, JA, Lang, AE. Parkinson’s disease. Cognitive changes in relation to treatment response. Brain 1987; 110(1): 3551.Google Scholar
29. Saint-Cyr, JA, Taylor, AE, Lang, AE. Procedural learning and neostriatal dysfunction in man. Brain 1988; 111(4): 941959.CrossRefGoogle ScholarPubMed
30. Taylor, AE, Saint-Cyr, JA, Lang, AE. Memory and learning in early Parkinson’s disease: evidence for a “frontal lobe syndrome”. Brain Cog 1990; 13: 211232.Google Scholar
31. Dubois, B, Boller, F, Pillon, B, Agid, Y. Cognitive deficits in Parkinson’s disease. In: Corkin, S, Boller, F, Grafman, J, (Eds). Handbook of Neuropsychology Vol 5. Amsterdam: Elsevier, 1991: 195240.Google Scholar
32. Owen, AM, James, M, Leigh, PN, et al. Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 1992; 115: 17271751.Google Scholar
33. Elsinger, PJ, Grattan, LM. Frontal lobe and frontal-striatal substrates for different forms of human cognitive flexibility. Neuropsychologia 1993; 31: 1728.Google Scholar
34. Saint-Cyr, JA, Taylor, AE, Nicholson, K. Behavior and the basal ganglia. Adv Neurol 1995; 65: 128.Google Scholar
35. Owen, AM, Doyon, J, Dagher, A, et al. Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain 1998; 121: 949965.Google Scholar
36. Rogers, RD, Sahakian, BJ, Hodges, JR, et al. Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain 1998; 121: 815842.CrossRefGoogle ScholarPubMed
37. Troster, AI, Woods, SP. Neuropsychological Aspects of Parkinson’s Disease and Parkinsonian Syndromes. In: Pahwa, R, Lyons, KE, Koller, WC, (Eds). Handbook of Parkinson’s Disease. (3rd ed.) New York: Marcel Dekker, 2003, in press.Google Scholar
38. Alexander, GE, Crutcher, MD, DeLong, MR. Basal ganglia-thalamo-cortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’and ‘limbic’functions. In: Progress in Brain Research, Vol. 85. Amsterdam: Elsevier, 1990: 19146.Google Scholar
39. Brown, RG, Marsden, CD. Cognitive function in Parkinson’s disease: from description to theory. Trends Neurosci 1990; 13(1): 2129.CrossRefGoogle ScholarPubMed
40. Saint-Cyr, JA, Taylor, AE, Trépanier, LL, Lang, AE. The caudate nucleus: head ganglion of the habit system. In: Vallar, G, Cappa, SF, Wallesch, CW, (Eds). Neuropsychological disorders associated with subcortical lesions. Oxford: Oxford Science Publications, 1992: 204226.CrossRefGoogle Scholar
41. Saint-Cyr, JA, Taylor, AE. The mobilization of procedural learning. The “key signature” of the basal ganglia. In: Butters, N, Squire, LR, (Eds). Neuropsychology of Memory (2nd ed). New York: The Guilford Press, 1992: 188202.Google Scholar
42. Dubois, B, Pillon, B. Cognitive deficits in Parkinson’s disease. J Neurol 1997; 244: 28.Google Scholar
43. Knoke, D, Taylor, A, Saint-Cyr, J. The differential effects of cueing on recall in Parkinson’s disease and normal subjects. Brain Cogn 1998; 38: 261274.CrossRefGoogle ScholarPubMed
44. West, R, Ergis, AM, Winocur, G, Saint-Cyr, J. The contribution of impaired working memory monitoring to performance of the self-ordered pointing task in normal aging and Parkinson’s disease. Neuropsychology 1998; 12: 546554.Google Scholar
45. Owen, AM, Doyon, J. The cognitive neuropsychology of Parkinson’s disease: a functional neuroimaging perspective. In: Stern, GM, (Ed). Parkinson’s Disease: Advances in Neurology (Vol. 80). Philadelphia: Lippincott, Williams & Wilkins; 1999: 4956.Google Scholar
46. Saint-Cyr, JA. Frontal-striatal circuit functions: context, sequence and consequence. J Int Neuropsych Soc. In press.Google Scholar
47. Saint-Cyr, JA, Trépanier, LL. Neuropsychologic assessment of patients for movement disorder surgery. Mov Disord 2000; 15(5): 771783.Google Scholar
48. Lang, AE, Lozano, AM. Parkinson’s disease – second of two parts. N Eng J Med 1998b; 339(16): 11301143.Google Scholar
49. Defer, GL, Widner, H, Marie, RM, Remy, P, Levivier, M. Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov Disord 1999; 14(4): 572584.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
50. Lang, AE, Widner, H. Deep brain stimulation for Parkinson’s disease: patient selection and evaluation. Mov Disord 2002; 17(Supp l3): S94-S101.Google Scholar
51. Krack, P, Pollak, P, Limousin, P, et al. Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 1998; 121(3): 451457.Google Scholar
52. Benabid, AL, Krack, PP, Benazzouz, A, et al. Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 2000; 55(12 Suppl 6): S40-S44.Google Scholar
53. Lang, AE, Lozano, AM, Montgomery, E, et al. Posteroventral medial pallidotomy in advanced Parkinson’s disease. New Eng J Med 1997; 337(15): 10361042.CrossRefGoogle ScholarPubMed
54. Dymek, M, Marson, D, Atchison, P. Executive dysfunction and capacity to consent to treatment in Parkinson’s disease. Arch Clin Neuropsych 1999; 14: 48.Google Scholar
55. Jahanshahi, M, Brown, RG, Rothwell, JC, et al. Subthalamic nucleus (STN) and globus pallidus (GPi) stimulation in Parkinson’s disease: II. Effects on executive function and working memory. Mov Disord 1997; 12 (Suppl 1): 130.Google Scholar
56. Stebbins, GT, Gabrieli, JD, Masciara, F, Goetz, CG. Cognitive processing speed affects both working memory and strategic memory in PD and normal aging. Mov Disord 1997; 12: 128.Google Scholar
57. Saint-Cyr, JA, Trépanier, LL, Kumar, R, et al. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 2000; 123: 101118.Google Scholar
58. Peavy, GM, Salmon, D, Bear, PI, et al. Detection of mild cognitive deficits in Parkinson’s disease patients with the WAIS-R NI. J Int Neuropsychol Soc 2001; 7(5): 535543.Google Scholar
59. Tröster, AI, Fields, JA. The role of neuropsychological evaluation in the neurosurgical treatment of movement disorders. In: Tarsy, D, Vitek, JL, Lozano, AM, (Eds). Surgical Treatment of Parkinson’s Disease and Other Movement Disorders. Totowa, NJ: Humana Press. 2003;213:240.Google Scholar
60. Huber, S, Christy, J, Paulson, G. Cognitive heterogeneity associated with clinical subtypes of Parkinson’s disease. Neuropsychiatry Neuropsychol Behav Neurol 1991; 4: 147157.Google Scholar
61. Filoteo, JV, Rilling, LM, Cole, B, et al. Variable memory profiles in Parkinson’sdisease. J Clin Exp Neuropsychol 1997; 19: 878888.Google Scholar
62. Graham, J, Sagar, H. A data-driven approach to the study of heterogeneity in idiopathic Parkinson’s disease: identification of three distinct subtypes. Mov Disord 1999; 14: 1020.3.0.CO;2-4>CrossRefGoogle Scholar
63. Stocchi, F, Brusa, L. Cognition and emotion in different stages and subtypes of Parkinson’s disease. J Neurol 2000; 247(Suppl 2): II114-II121.Google Scholar
64. Gwinn-Hardy, K. Genetics of parkinsonism. Mov Disord 2002; 17(4): 645656.Google Scholar
65. Rajput, AH. Frequency and cause of Parkinson’s Disease. Can J Neurol Sci 1992a; 19: 103107.Google Scholar
66. Scott, R, Gregory, R, Hines, N, et al. Neuropsychological, neurological and functional outcome following pallidotomy for Parkinson’s disease. A consecutive series of eight simultaneous bilateral and twelve unilateral procedures. Brain 1998; 121(4): 659675.Google Scholar
67. Trépanier, LL, Saint-Cyr, JA, Lozano, AM, Lang, AE. Neuropsychological consequences of posteroventral pallidotomy for the treatment of Parkinson’s disease. Neurology 1998; 51(1): 207215.Google Scholar
68. Lang, A, Duff, J, Saint-Cyr, J, et al. Posteroventral medial pallidotomy in Parkinson’s disease. J Neurol 1999; 246 (Suppl 2): II28-II41.CrossRefGoogle ScholarPubMed
69. Trépanier, L, Kumar, R, Lozano, A, et al. Neuropsychological outcome of neurosurgical therapies in Parkinson’s disease: a comparison of GPi pallidotomy and deep brain stimulation of GPi or STN. Brain Cog 2000; 42(3): 324347.Google Scholar
70. Aarsland, D, Tandberg, E, Larsen, JP, et al. Frequency of dementia in Parkinson disease. Arch Neurol 1996; 53: 538542.Google Scholar
71. Aarsland, D, Ballard, C, McKeith, I, Perry, RH, Larsen, JP. Comparison of extrapyramidal signs in dementia with Lewy bodies and Parkinson’s disease. J Neuropsychiatry Clin Neurosci 2001; 13(3): 374379.Google Scholar
72. Mayeux, R, Chen, J, Mirabello, E, et al. An estimate of the incidence of dementia in idiopathic Parkinson’s disease. Neurology 1990; 40: 15131517.Google Scholar
73. Jefferson, AL, Cosentino, SA, Ball, SK, et al. Errors produced on the mini-mental state examination and neuropsychological test performance in Alzheimer’s disease, ischemic vascular dementia, and Parkinson’s disease. J Neuropsychiatry Clin Neurosci 2002; 14(3): 311320.CrossRefGoogle ScholarPubMed
74. Mahieux, F, Michelet, D, Manifacier, M-J, et al. Mini-Mental Parkinson: first validation study of a new bedside test constructed for Parkinson’s disease. Behav Neurol 1995; 8: 1522.CrossRefGoogle ScholarPubMed
75. Mattis, S. Dementia Rating Scale: Professional manual. Odessa, Florida: Psychological Assessment Resources, 1988.Google Scholar
76. Chui, HC, Perlmutter, LS. Pathological correlates of dementia in Parkinson’s disease. In: Huber, SJ, Cummings, JL, (Eds). Parkinson’s Disease: Neurobehavioral Aspects. New York: Oxford University Press, 1992: 164177.Google Scholar
77. McKeith, IG, Galasko, D, Kosaka, K, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996; 47: 11131124.CrossRefGoogle Scholar
78. Pasquier, F, Delacourte, A. Non-Alzheimer degenerative dementias. Curr Opin Neurol 1998; 11: 417427.CrossRefGoogle ScholarPubMed
79. McKeith, IG, Burn, D. Spectrum of Parkinson’s disease, Parkinson’s dementia, and Lewy body dementia. Neurol Clin 2000; 18: 865902.Google Scholar
80. Tedeschi, G, Litvan, I, Bonavita, S, et al. Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson’s disease and corticobasal ganglionic degeneration. Brain 1997; 120: 15411552.Google Scholar
81. Antonini, A, Kazumata, K, Feigin, A, et al. Differential diagnosis of parkinsonism with [18F] fluorodeoxyglucose and PET. Mov Disord 1998; 13: 268274.CrossRefGoogle ScholarPubMed
82. Summerfield, C, Gomez-Anson, B, Tolosa, E, et al. Dementia in Parkinson disease: a proton magnetic resonance spectroscopy study. Arch Neurol 2002; 59(9): 14151420.Google Scholar
83. Hughes, AJ, Daniel, SE, Blankson, S, Lees, AJ. A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol 1993; 50: 140148.Google Scholar
84. Apaydin, H, Ahlskog, JE, Parisi, JE, et al. Parkinson disease neuropathology: later-developing dementia and loss of the levodopa response. Arch Neurol 2002; 59(1): 102112.Google Scholar
85. Levy, G, Schupf, N, Tang, MX, et al. Combined effect of age and severity on the risk of dementia in Parkinson’s disease. Ann Neurol 2002; 51(6): 722729.Google Scholar
86. Rajput, AH. Prevalence of dementia in Parkinson’s disease. In: Huber, SJ, Cummings, JL, (Eds). Parkinson’s Disease: Neurobehavioral Aspects. New York: Oxford University Press, 1992b: 119131.Google Scholar
87. Absher, JR, Cummings, JL. Noncognitive behavioral alterations in dementia syndromes. In: Spinnler, H, Boller, F, (Eds). Handbook of Neuropsychology. New York: Elsevier, 1993: 315338.Google Scholar
88. Dalla Barba, G, Boller, F. Non-Alzheimer degenerative dementias. Curr Opin Neurol 1994; 7(4): 305309.Google Scholar
89. Jacobs, DM, Marder, K, Côté, LJ, et al. Neuropsychological characteristics of preclinical dementia in Parkinson’s disease. Neurology 1995; 45: 16911696.Google Scholar
90. Lieberman, AP, Trojanowski, JQ, Lee, VM, et al. Cognitive, neuroimaging, and pathological studies in a patient with Pick’s disease. Ann Neurol 1998; 43: 259265.Google Scholar
91. Papka, M, Rubio, A, Schiffer, RB. A review of Lewy body disease, an emerging concept of cortical dementia. J Neuropsychiatry Clin Neurosci 1998; 10: 267279.Google Scholar
92. Saint-Cyr, JA, Taylor, AE, Lang, AE. Neuropsychological and psychiatric side effects in the treatment of Parkinson’s disease. Neurology 1993; 43: S47-S52.Google Scholar
93. Vazquez, A, Sempere, AP, Duarte, J, et al. Psychiatric manifestations and their predictive risk factors in Parkinson disease (Survey of a cohort of 520 patients). Mov Disord 1997; 12: 128.Google Scholar
94. Vingerhoets, G, van der Linden, C, Lannoo, E, et al. Cognitive outcome after unilateral pallidal stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999; 66: 297304.Google Scholar
95. Shergill, SS, Walker, Z, Le Katona, C. A preliminary investigation of laterality in Parkinson’s disease and susceptibility to psychosis. J Neurol Neurosurg Psychiatry 1998; 65: 610611.Google Scholar
96. Brown, RG, MacCarthy, B. Psychiatric morbidity in patients with Parkinson’s disease. Psychol Med 1990; 20(1): 7787.Google Scholar
97. Menza, MA, Robertson-Hoffman, DE, Bonapace, AS. Parkinson’s disease and anxiety: comorbidity with depression. Biol Psychiatry 1993; 34: 465470.Google Scholar
98. Meara, J, Hobson, P. Depression, anxiety and hallucinations in Parkinson’s disease. Elder Care 1998; 10: S4-S5.Google Scholar
99. Wolters, EC. Dopaminomimetic psychosis in Parkinson’s disease patients. Neurology 1999;52 (Suppl 3):S10-S13.Google ScholarPubMed
100. Cummings, J. Depression and Parkinson’s disease: a review. Am J Psychiatry 1992;149:443454.Google Scholar
101. Poewe, W, Luginger, E. Depression in Parkinson’s disease: impediments to recognition and treatment options. Neurology 1999;52 (Suppl 3):S2-S6.Google Scholar
102. Edwards, E, Kitt, C, Oliver, E, et al. Depression and Parkinson’s disease: a new look at an old problem. Depress Anxiety 2002; 16(1): 3948.Google Scholar
103. Starkstein, SE, Mayberg, HS, Leiguarda, R, et al. A prospective longitudinal study of depression, cognitive decline, and physical impairments in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1992; 55: 377382.Google Scholar
104. Cole, SA, Woodard, JL, Juncos, JL, et al. Depression and disability in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 1996; 8: 2025.Google Scholar
105. Shulman, LM. Apathy in patients with Parkinson’s disease. Int Rev Psychiatry 2000; 12: 298306.Google Scholar
106. Fields, JA, Norman, S, Straits-Tröster, KA, Tröster, AI. The impact of depression on memory in neurodegenerative disease. In: Tröster, AI, (Ed). Memory in Neurodegenerative Disease: Biological, Cognitive, and Clinical Perspectives. New York: Cambridge University Press, 1998: 314337.Google Scholar
107. Taylor, AE, Saint-Cyr, JA. Depression in Parkinson’s disease: reconciling physiological and psychological perspectives. J Neuropsychiatry Clin Neurosci 1990; 2(1): 9298.Google ScholarPubMed
108. Starkstein, SE, Bolduc, PL, Mayberg, HS, Preziosi, TJ, Robinson, RG. Cognitive impairments and depression in Parkinson’s disease: a follow up study. J Neurol Neurosurg Psychiatry 1990;53:597602.Google Scholar
109. Tröster, AI, Stalp, LD, Paolo, AM, et al. Neuropsychological impairment in Parkinson’s disease with and without depression. Arch Neurol 1995; 52: 11641169.Google Scholar
110. Kuzis, G, Sabe, L, Tiberti, C, et al. Cognitive functions in major depression and Parkinson disease. Arch Neurol 1997; 54: 982986.CrossRefGoogle ScholarPubMed
111. Norman, S, Tröster, AL, Fields, JA, Brooks, R. Effects of depression and Parkinson’s disease on cognitive functioning. J Neuropsych Clin Neurosci 2002; 14: 3136.Google Scholar
112. Starkstein, S, Leiguardia, R, Gershan, O, et al. Neurosurgical disturbance in hemiparkinson’s disease. Neurology 1987; 37: 17621764.Google Scholar
113. Fahim, S, van Duijn, CM, Baker, FM, et al. A study of familial aggregation of depression, dementia and Parkinson’s disease. Eur J Epidemiol 1998;14: 233238.Google Scholar
114. Heberlein, I, Ludin, HP, Scholz, J, Vieregge, P. Personality, depression, and premorbid lifestyle in twin pairs discordant for Parkinson’s disease. J Neurol Neurosurg Psychiatry 1998;64:262266.Google Scholar
115. Sano, M, Stern, Y, Côté, L, et al. Depression in Parkinson’s disease: a biochemical model. J Neuropsychiatry Clin Neurosci 1990; 2: 8892.Google Scholar
116. Mayberg, HS, Solomon, DH. Depression in Parkinson’s disease: a biochemical and organic viewpoint. Adv Neurol 1995; 65: 4960.Google Scholar
117. Stojanovic, M, Filipovic, SR, Kacar, A, et al. Obsessive-compulsive symptoms in Parkinson’s disease. Mov Disord 1997; 12: 128.Google Scholar
118. Glosser, G, Clark, C, Freundlich, B, et al. A controlled investigation of current and premorbid personality: characteristics of Parkinson’s disease patients. Mov Disord 1995; 10: 201206.CrossRefGoogle ScholarPubMed
119. Mega, MS, Cummings, JL. Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 1994; 6(4): 358370.Google Scholar
120. Côté, L. Depression: Impact and management by the patient and family. Neurology 1999; 52(Suppl 3): S7-S9.Google Scholar
121. Houeto, JL, Mesnage, V, Mallet, L, et al. Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry 2002; 72(6): 701707.Google Scholar
122. Kazumata, K, Antonini, A, Dhawan, V, et al. Preoperative indicators of clinical outcome following stereotaxic pallidotomy. Neurology 1997; 49: 10831090.Google Scholar
123. Samuel, M, Caputo, E, Brooks, DJ, et al. A study of medial pallidotomy for Parkinson’s disease: clinical outcome, MRI location and complications. Brain 1998; 121: 5975.Google Scholar
124. Scott, RB. Cognitive function and pallidotomy. J Neurol Neurosurg Psychiatry 1998; 65(2): 148.Google Scholar
125. York, MK, Levin, HS, Grossman, RG, et al. Neuropsychological outcome following unilateral pallidotomy. Brain 1999; 122: 22092220.Google Scholar
126. Green, J, Barnhart, H. The impact of lesion laterality on neuropsychological change following posterior pallidotomy: a review of current findings. Brain Cog 2000; 42(3): 379398.Google Scholar
127. Stebbins, GT, Gabrieli, JDE, Shannon, KM, et al. Impaired fronto-striatal cognitive functioning following posteroventral pallidotomy in advanced Parkinson’s disease. Brain Cog 2000; 42(3): 3481–363.Google Scholar
128. De Bie, RM, De Haan, RJ, Schuurman, PR, et al. Morbidity and mortality following pallidotomy in Parkinson’s disease: a systematic review. Neurology 2002; 58: 10081012.CrossRefGoogle ScholarPubMed
129. Green, J, McDonald, WM, Vitek, JL, et al. Neuropsychological and psychiatric sequelae of pallidotomy for PD: clinical trial findings. Neurology 2002;58(6):858865.Google Scholar
130. Kumar, R, Lozano, AM, Kim, YJ, et al. Double-blind evaluation of the effects of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 1998a; 51(3): 850855.CrossRefGoogle ScholarPubMed
131. Lozano, AM, Lang, AE, Galvez-Jimenez, N, et al. Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet 1995; 346: 13831387.Google Scholar
132. Perozzo, P, Rizzone, M, Bergamasco, B, et al. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: comparison of pre- and postoperative neuropsychological evaluation. J Neurol Sci 2001; 192(1–2): 915.Google Scholar
133. Wilson, S, Bladin, P, Saling, M. The “burden of normality”: concepts of adjustment after surgery for seizures. J Neurol Neurosurg Psychiatry 2001; 70(5): 649656.Google Scholar
134. Shannon, KM, Penn, RD, Kroin, JS, et al. Stereotactic pallidotomy for the treatment of Parkinson’s disease. Efficacy and adverse effects at 6 months in 26 patients. Neurology 1998; 50: 434438.Google Scholar
135. Ghika, J, Ghika-Schmid, F, Fankhauser, H, et al. Bilateral contemporaneous posteroventral pallidotomy for the treatment of Parkinson’s disease: neuropsychological and neurological side effects. Report of four cases and review of the literature. J Neurosurg 1999; 91(2): 313321.Google Scholar
136. Scott, RB, Harrison, J, Boulton, C, et al. Global attentional-executive sequelae following surgical lesions to globus pallidus interna. Brain 2002; 125(Pt 3): 562574.Google Scholar
137. Turner, KR, Reid, WG, Homewood, J, et al. Neuropsychological sequelae of bilateral posteroventral pallidotomy. J Neurol Neurosurg Psychiatry 2002; 73(4): 444446.Google Scholar
138. Crowe, SF, O’Sullivan, JD, Peppard, RF, et al. Left posteroventral pallidotomy results in a deficit in verbal memory. Behav Neurol 1998; 11: 7984.Google Scholar
139. Uitti, RJ, Wharen, RE, JrTurk, MF, et al. Unilateral pallidotomy for Parkinson’s disease: comparison of outcome in younger versus elderly patients. Neurology 1997; 49: 10721077.Google Scholar
140. Masterman, D, DeSalles, A, Baloh, RW, et al. Motor, cognitive, and behavioral performance following unilateral posterior pallidotomy for Parkinson’s disease. Arch Neurol 1998; 55: 12011208.Google Scholar
141. Tröster, AI, Fields, JA, Wilkinson, SB, et al. Unilateral pallidal stimulation for Parkinson’s disease: neurobehavioral functioning before and 3 months after electrode implantation. Neurology 1997; 49: 10781083.Google Scholar
142. Marsden, CD, Obeso, JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 1994; 117: 877897.Google Scholar
143. Dagher, A, Owen, AM, Boecker, H, et al. The role of the striatum and hippocampus in planning: a PET activation study in Parkinson’s disease. Brain 2001; 124(5) :10201032.Google Scholar
144. De Bie, RM, Schuurman, PR, Bosch, DA, et al. Outcome of unilateral pallidotomy in advanced Parkinson’s disease: cohort study of 32 patients. J Neurol Neurosurg Psychiatry 2001; 71(3): 375382.Google Scholar
145. Woods, SP, Fields, JA, Tröster, AI. Neuropsychological sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a critical review. Neuropsych Rev 2002:111126.Google Scholar
146. Galvez-Jimenez, N, Lozano, AM, Duff, J, et al. Bilateral pallidotomy pronounced amelioration of incapacitating levodopa-induced dyskinesias but accompanying cognitive decline. Mov Disord 1996; 11: 242.Google Scholar
147. Lhermitte, F. ‘Utilization behaviour’ and its relation to lesions of the frontal lobes. Brain 1983; 106(2): 237255.CrossRefGoogle ScholarPubMed
148. Lhermitte, F, Pillon, B, Serdaru, M. Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: a neuropsychological study of 75 patients. Ann Neurol 1986; 19(4): 326334.Google Scholar
149. Lhermitte, F. Human autonomy and the frontal lobes. Part II: Patient behavior in complex and social situations: the “environmental dependency syndrome”. Ann Neurol 1986; 19(4): 335343.Google Scholar
150. Parkin, SG, Gregory, RP, Scott, R, et al. Unilateral and bilateral pallidotomy for idiopathic Parkinson’s disease: a case series of 115 patients. Mov Disord 2002; 17(4): 682692.Google Scholar
151. Gross, RE, Lombardi, WJ, Lang, AE, et al. Variability in lesion location following microelectrode-guided pallidotomy. II. Relationship of lesion location to clinical outcome following microelectrode-guided pallidotomy for Parkinson’s disease. Brain 1999;122 (Pt 3): 405416.Google Scholar
152. Lombardi, WJ, Gross, RE, Trépanier, LL, et al. Relationship of lesion location to cognitive outcome following microelectrode-guided pallidotomy for Parkinson’s disease: support for the existence of cognitive circuits in the human pallidum. Brain 2000; 123: 746758.Google Scholar
153. Dujardin, K, Krystkowiak, P, Defebvre, L, Blond, S, Destee, A. A case of severe dysexecutive syndrome consecutive to chronic bilateral pallidal stimulation. Neuropsychologia 2000; 38: 13051315.Google Scholar
154. Ardouin, C, Pillon, B, Peiffer, E, et al. Bilateral subthalamic or pallidal stimulation for Parkinson’s disease affects neither memory nor executive functions: a consecutive series of 62 patients. Ann Neurol 1999; 46: 217223.Google Scholar
155. Fields, JA, Tröster, AI, Wilkinson, SB, et a;. Cognitive outcome following staged bilateral pallidal stimulation for the treatment of Parkinson’s disease. Clin Neurol Neurosurg 1999; 101: 182188.Google Scholar
156. Bejjani, B, Damier, P, Arnulf, I, et al. Pallidal stimulation for Parkinson’s disease. Two targets? Neurology 1997; 49(6): 15641569.Google Scholar
157. Krack, P, Pollak, P, Limousin, P, et al. From off-period dystonia to peak-dose chorea. The clinical spectrum of varying subthalamic nucleus activity. Brain 1999; 122(6): 11331146.Google Scholar
158. Ashby, P, Strafella, A, Dostrovsky, JO, Lozano, A, Lang, AE. Immediate motor effects of stimulation through electrodes implanted in the human globus pallidus. Stereotact Funct Neurosurg 1998; 70(1): 118.Google Scholar
159. Bejjani, BP, Arnulf, I, Houeto, JL, et al. Concurrent excitatory and inhibitory effects of high frequency stimulation: an oculomotor study. J Neurol Neurosurg Psychiatry 2002; 72(4): 517522.Google Scholar
160. Benazzouz, A, Hallett, M. Mechanism of action of deep brain stimulation. Neurology 2000; 55(12 Suppl 6): S13-S16.Google Scholar
161. Brown, RG, Dowsey, PL, Brown, P, et al. Impact of deep brain stimulation on upper limb akinesia in Parkinson’s disease. Ann Neurol 1999; 45(4): 473488.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
162. Jahanshahi, M, Ardouin, CMA, Brown, RG, et al. The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 2000; 123(6): 11421154.Google Scholar
163. Pillon, B, Ardouin, C, Damier, P, el al. Neuropsychological changes between “off” and “on” STN and GPi stimulation in Parkinson’s disease. Neurology 2000; 55(3): 411418.CrossRefGoogle Scholar
164. Limousin1, P, Greene, J, Pollak, P, et al. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease. Ann Neurol 1997; 42(3): 283291.Google Scholar
165. Carbon, M, Eidelberg, D. Modulation of regional brain function by deep brain stimulation: studies with positron emission tomography. Curr Opin Neurol 2002; 15(4): 451455.Google Scholar
166. Bejjani, BP, Damier, P, Arnulf, I, et al. Transient acute depression induced by high frequency deep brain stimulation. N Engl J Med 1999; 340: 14761480.Google Scholar
167. Stefurak, TL, Mikulis, D, Mayberg, H, et al. Deep brain stimulation associated dysphoria and cortico-limbic changes detected by fMRI. Mov Disord 2001; 16(Suppl. 1): S54-S55.Google Scholar
168. Krack, P, Kumar, R, Ardouin, C, et al. Mirthful laughter induced by subthalamic nucleus stimulation. Mov Disord 2001; 16: 867875.CrossRefGoogle ScholarPubMed
169. Bejjani, BP, Damier, P, Arnulf, I, et al. Deep brain stimulation in Parkinson’s disease: opposite effects of stimulation in the pallidum. Mov Disord 1998; 13(6): 969970.Google Scholar
170. Yelnik, J, Damier, P, Bejjani, BP, et al. Functional mapping of the human globus pallidus: contrasting effect of stimulation in the internal and external pallidum in Parkinson’s disease. Neuroscience 2000; 101(1): 7787.Google Scholar
171. Heindel, WC, Salmon, DP, Shults, CW, Walicke, PA, Butters, N. Neuropsychological evidence for multiple memory systems: a comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. J Neurosci 1989; 9: 582587.Google Scholar
172. Mink, JW. The basal ganglia: focused selection and inhibition of competing motor programs. Progress Neurobiol 1996;50:381425.Google Scholar
173. Wise, SP, Murray, EA, Gerfen, CR. The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 1996; 10(3–4): 317356.Google Scholar
174. Filion, M, Tremblay, L, Matsumura, M, Richard, H. Focalisation dynamique de la convergence informationnelle dans les noyaux gris centraux. Rev Neurol (Paris) 1994; 150(8–9): 627633.Google Scholar
175. Knowlton, BJ, Mangels, JA, Squire, LR. A neostriatal habit learning system in humans. Science 1996; 273: 13991402.Google Scholar
176. Davis, KD, Taub, E, Houser, D, et al. Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nat Med 1997; 3: 671674.Google Scholar
177. Ceballos-Baumann, A, Boecker, H, Bartenstein, P, et al. A positron mission tomography study of subthalamic nucleus stimulation in Parkinson’s disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 1999; 56: 9971003.Google Scholar
178. Rezai, AR, Lozano, AM, Crawley, AP, et al. Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. Technical note. J Neurosurg 1999; 90(3): 583590.Google Scholar
179. Fukuda, M, Edwards, C, Eidelberg, D. Functional brain networks in Parkinson’s disease. Parkinsonism Relat Disord 2001; 8(2): 9194.Google Scholar
180. Samuel, M, Ceballos-Baumann, AO, Holmes, AP, et al. Pallidotomy in Parkinson’s disease increases SMA and prefrontal activation during performance of volitional movements: an H2 15O PET study. Brain 1997; 120: 13011313.Google Scholar
181. Sestini, S, Scotto di Luzio, A, Ammannati, F, et al. Changes in regional cerebral blood flow caused by deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. J Nucl Med 2002; 43(6): 725732.Google Scholar
182. Schubert, T, Volkmann, J, Muller, U, et al. Effects of pallidal deep brain stimulation and levodopa treatment on reaction-time performance in Parkinson’s disease. Exp Brain Res 2002; 144(1): 816.Google Scholar
183. Schroeder, U, Kuehler, A, Haslinger, B, et al. Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 2002; 125(9): 19952004.Google Scholar
184. Pollo, A, Torre, E, Lopiano, L, et al. Expectation modulates the response to subthalamic nucleus stimulation in parkinsonian patients. Neuroreport 2002; 13(11): 13831386.Google Scholar
185. de la Fuente-Fernandez, R, Ruth, TJ, Sossi, V, et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 2001; 293(5532): 11641166.Google Scholar
186. Saint-Cyr, JA, Hoque, T, Pereira, LCM, et al. The MRI localization of clinically effective stimulating electrodes in the human subthalamic nucleus. J Neurosurg 2002; 97: 11521166.Google Scholar
187. Lanotte, MM, Rizzone, M, Bergamasco, B, et al. Deep brain stimulation of the subthalamic nucleus: anatomical, neuro-physiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 2002; 72(1): 5358.Google Scholar
188. Starr, PA, Christine, CW, Theodosopoulos, PV, et al. Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 2002; 97(2): 370387.Google Scholar
189. Parent, A, Cicchetti, F. The current model of basal ganglia organization under scrutiny. Mov Disord 1998; 13(2): 199202.Google Scholar
190. Parent, A, Levesque, M, Parent, A. A re-evaluation of the current model of the basal ganglia. Parkinsonism Relat Disord 2001; 7(3): 193198.Google Scholar