Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T07:15:46.487Z Has data issue: false hasContentIssue false

Nociceptive Threshold and Physical Activity

Published online by Cambridge University Press:  18 September 2015

Régis Guieu*
Affiliation:
Clinique des maladies neuromusculaire et de l’appareil locomoteur, Marseille, France
Olivier Blin*
Affiliation:
Clinique des maladies neuromusculaire et de l’appareil locomoteur, Marseille, France
Jean Pouget*
Affiliation:
Clinique des maladies neuromusculaire et de l’appareil locomoteur, Marseille, France
Georges Serratrice*
Affiliation:
Clinique des maladies neuromusculaire et de l’appareil locomoteur, Marseille, France
*
Clinique des maladies neuromusculaire et de l’appareil locomoteur, Chu Timone, Avenue de l’armée d’Afrique 13385 Marseille Cedex 5, France
Clinique des maladies neuromusculaire et de l’appareil locomoteur, Chu Timone, Avenue de l’armée d’Afrique 13385 Marseille Cedex 5, France
Clinique des maladies neuromusculaire et de l’appareil locomoteur, Chu Timone, Avenue de l’armée d’Afrique 13385 Marseille Cedex 5, France
Clinique des maladies neuromusculaire et de l’appareil locomoteur, Chu Timone, Avenue de l’armée d’Afrique 13385 Marseille Cedex 5, France
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Previous studies using subjective tools to measure pain have shown that muscle exercise can have analgesic effects in man. The nociceptive leg flexion reflex (or RIII reflex) is a useful objective tool for assessing human pain. In this study, the pain threshold was assessed using the nociceptive flexion reflex in six high-level athletes 1) at rest in comparison with 8 control subjects and 2) after exercise requiring the production of a 200-Watt force over a period of 20 minutes. The nociceptive flexion reflex threshold at rest was found to be spontaneously higher in the athletes than in the controls. Physical activity resulted in a significant increase (+53%) in the threshold of the nociceptive reflex in the athletes. The role of stress-induced analgesia, the reduction in perceived intensity of stimuli during movement, and the release of opioids are discussed.

Type
Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1992

References

1. Black, J, Chesler, GB, Starmer, GA.The painlessness of the long distance runner. Med J Aust 1970; 2: 522523.Google Scholar
2. Pertovaara, A, Huopaniemi, T, Virtanen, A, et al. The influence of exercise on dental pain thresholds and the release of stress hormones. Physiol Behav 1984; 3: 923926.Google Scholar
3. Kemppainen, P, Pertovaara, A, Huopaniemi, T, et al. Modification of dental pain and cutaneous thermal sensitivity by physical exercise in man. Brain Res 1985; 36: 3340.CrossRefGoogle Scholar
4. Wilier, JC.Nociceptive flexion reflex as a tool for pain research in man. In: Desmedt, JE, ed. Advances in Neurology, Raven Press: New York 1983; 39: 809827.Google Scholar
5. Olausson, B, Eriksson, E, Ellmaker, L, et al. Effects of naloxone on dental pain threshold following muscle exercise and low frequency transcutaneous electrical nerve stimulation: a comparative study in man. Acta Physiol Scand 1986; 126: 299305.CrossRefGoogle ScholarPubMed
6. Hugon, M.Réflexes polysynaptiques et réflexes monosynaptiques évoqués dans le muscle biceps fémoris capitis brévis chez l’homme normal. Rev Neurol 1969; 120: 492494.Google Scholar
7. Bathien, N.Réflexes spinaux chez l’homme et niveaux d’attention. Electroencephalogr Clin Neurophysiol 1971; 30: 3237.CrossRefGoogle Scholar
8. Kuoppasalmi, K.Effects of exercise stress on human plasma hormone levels. MD Thesis, 1981, University of Helsinki.Google Scholar
9. Lewis, JW, Terman, GW, Shavit, Y, et al. Neural, neurochemical, and hormonal basis of stress-induced analgesia. In: Kruger, L and Liebeskind, JC, eds. Neural mechanism of pain. Raven Press: New York 1984: 277288.Google Scholar
10. Milne, RJ, Aniss, AM, Gandevia, SC.Reduction in perceived intensity of cutaneous stimuli during movement: a quantitative study. Exp Brain Res 1988; 70: 569576.CrossRefGoogle ScholarPubMed
11. Kemppainen, P, Pertovaara, A, Huopaniemi, T, et al. Elevation of dental pain threshold induced in man by physical exercise is not reversed by cyproheptadine mediated suppression of growth hormone release. Neurosci Lett 1986; 70: 388392.CrossRefGoogle Scholar
12. Kemppainen, P, Paalasmaa, P, Pertovaara, A, et al. Dexamethasone attenuates exercise-induced dental analgesia in man. Brain Res 1990; 519:329332.CrossRefGoogle ScholarPubMed
13. Pertovaara, A, Kemppainen, P, Huopaniemi, T, et al. Pain and stress: correlation of stress hormone release to pain modulation in man. Ann Clin Res 1987; 19: 8386.Google ScholarPubMed
14. Gilman, MA, Lichigjeld, M.Naloxone analgesia: an update. Intern J Neurosci 1989; 48: 321324.CrossRefGoogle Scholar
15. Sawynok, J, Pinsky, C, Labella, FS.Minireview of the specificity of naloxone as an opiate antagonist. Life Sci 1979; 25: 16211632.CrossRefGoogle Scholar
16. Janal, MN, Colt, EW, Clark, WC, et al. Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: effect of naloxone. Pain 1984; 19: 1325.CrossRefGoogle ScholarPubMed
17. Colt, EWD, Wardlaw, SL, Frantz, AG.The effect of running on plasma endorphin. Life Sci 1981; 28: 16371640.CrossRefGoogle Scholar