Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T06:06:58.198Z Has data issue: false hasContentIssue false

Paul Flechsig’s System of Myelogenetic Cortical Localization In the Light of Recent Research in Neuroanatomy and Neurophysiology Part II

Published online by Cambridge University Press:  18 September 2015

Alfred Meyer*
Affiliation:
Department of Neuropathology, Institute of Psychiatry, London
*
38 Wood Lane, London, N6 5UB, U.K.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1896 Flechsig was still under the influence of Hermann Munk (1890) who had assumed that the cortex consisted of sensory centers, each equipped with efferent descending projection systems — olfactory, visual, auditory and — anterior to the last, the somatic sensory sphere (“Körperfühls-phäre”). This sphere also contained the kinaesthetic images of motor action induced by efferent fibers in the subcortical ganglia which, from Burdach (1819-26) until the time of Meynert, had been widely regarded as the highest motor centers. In 1905a, however, Flechsig had shed most of the influence of Munk. By then he had taken cognizance of the research of Grunbaum and Sherrington (1902, 1903) and realized that “in the highest anthropoid all stimulable points of the type of Fritsch and Hitzig are concentrated within one gyrus, namely the precentral gyrus, so that we can call this the motor gyrus … in man, too, the motor centers of the type of Fritsch and Hitzig are restricted to the precentral gyrus and the immediately adjacent part of the first frontal convolution. The central sulcus here too is the posterior boundary of the motor zone … Occasionally a larger or smaller part of the motor centers, especially of the fingers, gets into the postcentral convolution, but, according to my own embryological studies, only exceptionally. As a rule we have to assume that all voluntary motor impulses leave the cortex from the precentrai gyrus …”

Type
Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1981

References

Ariens, Kappers. C.U. (1909). The phylogenesis of the paleocortex and archicortex compared with the evolution of the visual neocortex. Arch. Neurol. Psychiat. (Lond.)4. 161173.Google Scholar
Bailey, P. and Bonin, G. von (1951). The Isocortex of Man. Urbana. Ill.: Univ. of Illinois Press.Google Scholar
Bechterew, W. (1885). Über die Schleifenschicht. Neurol, Zbl. 4. 356359.Google Scholar
Bianchi, L. (1895). The functions of the frontal lobes. Brain. 18. 497522.CrossRefGoogle Scholar
Bianchi, L. (1922). The Mechanisms of the Brain and the Function of the Frontal Lobes (transl, by J. H. MacDonald). Edinburgh and New York: Livingstone.Google Scholar
Bonin, G. von (1942). The striate area of primates. J. Comp. Neurol.. 77. 405429.CrossRefGoogle Scholar
Bonin, G. von (1944). Architecture of the precentral motor cortex and some adjacent areas. In: The Precentral Cortex (Ed. P.C. Buey), pp. 782. Urbana: University of Illinois Press (2nd edition 1946).Google Scholar
Bonin, G. von (1960). Some Papers on the Cerebral Cortex. Springfield. Ill.: Thomas.Google Scholar
Bonin, G. von and Mehler, W.R. (1971). On columnar arrangement of nerve cells in cerebral cortex. Brain Res. 27. 19.CrossRefGoogle Scholar
Brickner, R.M. (1936). The Intellectual Functions of the Frontal Lobes. New York: Macmillan.Google Scholar
Brodmann, K. (1909). Vergleichende Lokalisation der Grosshirnrinde. Chapter 9. Leipzig: Barth. (transl, by von Bonin. G., 1960). In: Some Papers on the Cerebral Cortex. pp. 201230. Springfield. III.: Thomas.Google Scholar
Burdach, K.F. (1819–1826). Vom Baue und Leben des Gehirns. 3 vols. Leipzig: Dyk’sche Buchhandlung.Google Scholar
Charcot, J.-M. (1876). Leçons sur les localisations dans les maladies du cerveau, pp. 232ff. Paris: Delahaye.Google Scholar
Clarke, E.G. and O’Malley, C.D. (1968). The Human Brain and Spinal Cord. Berkeley and Los Angeles: University of California Press.Google Scholar
Cobb, S. (1943). Borderlands of Psychiatry. Cambridge. Mass.: Harvard University Press.Google Scholar
Colonnier, M.L., (1966). Structural design of the neocortex. In: Brain and Conscious Experience (Ed. Eccles, J.C) pp. 123. Berlin. Heidelberg. New York: Springer.Google Scholar
Critchley, M. (1953). The Parietal Lobes. London: Arnold.Google Scholar
Critchley, M. (1978). Review on Brain mechanisms for directed attention (by Mountcastle. V.B.) J. Royal Soc. Medicine 71. 233.CrossRefGoogle Scholar
Cushing, H. (1908). Surgery of the head. In: Surgery, its Principles and Practice (Ed. W.W. Keen) vol. 3. 17276. Philadelphia: Saunders.Google Scholar
Cushing, H. (1909). A Note Upon the Faradic Stimulation of the Post-Central Gyrus in Conscious Patients. Brain 32. 4453.CrossRefGoogle Scholar
Dejerine, J., avec la collaboration de Madame Dcjerine-Klumpke (1901). Anatomic des Centres Nerveux. Tóme deuxième. Paris: J. Rueff.Google Scholar
Denny-Brown, D. (1951). The frontal lobes and their functions. In: Modern Trends in Neurology (Ed. A. Feiling). pp. 1389. London: Butterworths.Google Scholar
Denny-Brown, D. and Chambers, R.A. (1958). The parietal lobe and behavior. Res. Publ. Ass. Res. Nerv. Ment. Dis., 36. 35117.Google ScholarPubMed
Eccles, J.C., (1977). Part II in: The Self and its Brain (Eds. Karl R. Popper and John C. Eccles). Berlin. Heidelberg, London, New York: Springer.Google Scholar
Economo, C. von and Koskinas, G.N. (1925). Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Wien and Berlin: Springer.Google Scholar
Eti Linger, G. (1959). Visual discrimination following successive temporal ablations in monkeys. Brain. 82. 232250.CrossRefGoogle Scholar
Ettlinger, G., Iwai, E., Mishkin, M. and Rosvold, Ile. (1968). Visual discrimination in the monkey following serial ablation of inferotemporal and preoccipital cortex. J. Comp. Physiol. Psychol., 65. 110117.CrossRefGoogle ScholarPubMed
Ettlinger, G. and Kalsbeck, J.E. (1962). Change in tactile discrimination and in visual reaching after successive and simultaneous bilateral posterior parietal ablations in the monkey. J. Neurol. Neurosurg. Psychialr. 25. 256268.CrossRefGoogle ScholarPubMed
Filimonoff, I.N. (1929). Zur embryonalen und post-embryonalen Entwicklung der Grosshirnrinde des Menschen. J. Psychol. Neurol., 39. 323389.Google Scholar
Filimonoff, I.N. (1947). A rational subdivision of the cerebral cortex. Arch. Neurol. Psvchiatr. (Chic.) 58, 296311.CrossRefGoogle ScholarPubMed
Flechsig, P. (1876). Die Leitungsbahncn im Gchirn und Rückenmark des Menschen. Leipzig: Engelmann.Google Scholar
Flechsig, P. (1877). Über Systemerkrankungen im Rückenmark. Arch. Hcilk. 18. 101483.Google Scholar
Flechsig, P. (1881). Zur Anatomie und Entwicklungsgeschichte der Leitungsbahnen im Grosshirn des Menschen. Arch. Anat. Physiologic (Anat. Abt.) 1275.Google Scholar
Flechsig, P. (1883). Plan des menschlicben Gehirns. Leipzig: Veil & Co.Google Scholar
Flechsig, P. (1886). Zur lechrc vom ccntralen Verlauf der Sinnesnerven. Neurol. Zbl. 5. 545551.Google Scholar
Flechsig, P. (1894). Uber ein neues Einthcilungsprinzip der Grosshirn-Oberfläche. Neurol. Zbl. 13, 674676.Google Scholar
Flechsig, P. (1896). Gehirn und Seelc. Leipzig: Veil & Co.Google Scholar
Flechsig, P. (1898). Neue Untersuchungen über die Markbildung in den menschlichen Grosshirnlappcn. Neurol. Zbl. 17. 979996.Google Scholar
Flechsig, P. (1900). Les centres de projection cl d’association du cerveau humain. XIIIe Congr. Internat, de Med., Sect. de Neurol., pp. 115121 (quoted from Clarke & O. Malley. 1968).Google Scholar
Flechsig, P. (1901). Developmental (myelogenelic) localisation of the cerebral cortex in the human subject. Lancet 2, 10271029.CrossRefGoogle Scholar
Flechsig, P. (1904) Einige Bemcrkungen iiber die Untersuchungsmethoden der Grosshirnrinde. Insebesondere des Menschen, Ber. Verh. K. sächs. Ges. Wiss,. Leipzig, Math.-Phys. Kl. 56. 50104; 177248 (quoted from Clarke and O’Malley, 1968).Google Scholar
Flechsig, I’. (1905a). Gehirnphysiologic und Willensthcoricn. 5th Inte…at. Psychol. Congr. Rome. 7389. (transl, by von Bonin. G., 1960, in: Some Papers on the Cerebral Cortex. pp. 181200). Springfield. III.: Thomas.Google Scholar
Flechsig, P. (1905b). Einige Bemerkungen über die Untcrsuchungsmethoden der Grosshirnrinde, insbesonderc des Menschen. Arch. f. Anat. Physiol. Anal. Abt. 337444.CrossRefGoogle Scholar
Flechsig, P. (1908). Bemerkungen ùber die Hörsphaere des menschlichen Gehirns. Neurol. Zbl. 27, 27; 5057.Google Scholar
Flechsig, P. (1920). Anatomie des menschlichen Gehirns und Ruckenmarks auf myelogenetischer Grundlage. Leipzig: Thicme.Google Scholar
Flechsig, P. (1927). Mcine myelogenetische Hirnlehre mit biographischcr Einleitung. Berlin: Springer.Google Scholar
Foerster, O. (1936). Moiorische Felder und Bahnen. Sensible corlicale Felder. In: Handbuch der Neurologie (Eds. O. Bumke and O. Foerster). vol. 6, 1448. Berlin: Springer.Google Scholar
Globus, A. and Scheibel, A.B. (1967). Pattern and field in cortical structure: the rabbit. J. Comp. Neurol. 131, 155172.CrossRefGoogle ScholarPubMed
Goldstein, K. (1927). Die Lokalisation in der Grosshirnrinde. In: Handbuch der Normalen und Pathologischen Physiologie (Eds. A. Bethe G. Bergmann G. Embden and A. Ellinger), Vol. 10, 600842. Berlin: Springer.Google Scholar
Gordon, H.W., Bogen, J.E. and Sperry, R.W. (1971). Absence of déconnexion syndrome in two patients with partial section of the neocommissures. Brain, 94, 327336.Google Scholar
Grey-Walter, W., Cooper, R., Aldridge, V.J., McCallum, W.C. and Winter, A.L. (1964). Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature, 203. 380384.CrossRefGoogle Scholar
Gross, C.G., Bender, D.B. and Rocha-Miranda, C.E. (1974). Inferotemporal cortex: a single unit analysis. In: The Neurosciences Third Study Program, (Eds. F.O. Schmitt and F.G. Worden) pp. 229238; 451482.Google Scholar
Grünbaum, A.S.F. and Sherrington, C.S. (1902). Observations on the physiology of the cerebral cortex of some of the higher apes. (Preliminary Communication read to R. Society on November 21. 1901).Google Scholar
Grünbaum, A.S.F. and Sherrington, C.S. (1903). Observations on the physiology of the cerebral cortex of the anthropoid apes. Proc. R. Soc. 72. 152155.Google Scholar
Gudden, B. von (1872). Über den sog. paralylischen Grosscnwahnsinn. Korresp. Bl. Schweier Arzte 2, 7882.Google Scholar
Haymaker, W. (1970). Paul Flechsig (1847–1929) In: The Founders of Neurology (Eds. W. Haymakerand F. Schiller) 2nd Edition, pp. 2327. Springfield, Ill.: Thomas.Google Scholar
Head, H. (1926). Aphasia and Kindred Disorders of Speech. Cambridge University Press.Google Scholar
Hubel, D.H. and Wiesel, T.N. (1963). Shape and arrangement of columns in cat’s striate cortex. J. Physiol. 165, 559568.CrossRefGoogle ScholarPubMed
Hubel, D.H. and Wiesel, T.N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28. 229289.Google Scholar
Hubel, D.H. and Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195. 215243.CrossRefGoogle ScholarPubMed
Hubel, D.H. and Wiesel, T.N. (1969). Anatomical demonstration of columns in the monkey striate cortex. Nature 221. 747750.CrossRefGoogle ScholarPubMed
Hubet, D.H. and Wiesel, T.N. (1972). Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol. 146. 421450.Google Scholar
Jones, E.G. (1968). An electron microscope study of the terminations of afferent fibre systems within the somatic sensory cortex of the cat. J. Anat. (Lond.) 103, 595597.Google Scholar
Jones, E.G. and Powell, T.P.S. (1969). Connexions of the somatic sensory cortex of the Rhesus monkey. I. Ipsilateral cortical connexions. Brain 92, 477502.CrossRefGoogle ScholarPubMed
Jones, E.G. and Powell, T.P.S. (1970a). An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93, 793820.CrossRefGoogle ScholarPubMed
Jones, E.G. and Powell, T.P.S. (1970b). Electron microscopy of the somatic sensory cortex of the cat. (In 5 parts) Philos. Trans. B. 257. 162.Google ScholarPubMed
Jones, E.G. and Wise, S.P. (1977). Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys. J. Comp. Neurol. 175, 391437.CrossRefGoogle ScholarPubMed
Kaes, T. (1907). Die Grosshirnrinde des Menschen in ihren Massen und in Gehirn Fasergehalt. Jena: Gustav Fischer.Google Scholar
Klose, R. (1920). Das Gehirn eines Wunderkindes (des Pianisten Goswin Sokeland). Mschr. Psychiat. Neurol. 48, 63102.CrossRefGoogle Scholar
Kluver, H. and Bucy, P.C. (1939). Preliminary analysis of the functions of the temporal lobes in monkeys. Arch. Neurol. Psychiat. (Chic.) 42, 9791000.CrossRefGoogle Scholar
Kornhuber, H.H. (1974). Cerebral cortex, cerebellum and basal ganglia: an introduction to their motor functions. In: The Neurosciences Third Study Program (Eds. F.O. Schmitt and F.G. Worden) pp. 267280. Cambridge (Mass.) and London: The MIT Press.Google Scholar
Krause, F. (1911). Chirurgie des Gehirns und Ruckenmarkes nach eigenen Erfahrungen. 2 vols. Berlin; Urban und Schwarzenberg.Google Scholar
Kretschmann, H.J., Schleicher, A., Grottschreiber, J.F. and Kullmann, W. (1979). The Yakovlev Collection a pilot study of Its suitability for the morphometric documentation of the human brain. J. Neurol. Sci. 43. 111126.Google Scholar
Kuypers, H.G.J.M., Szwarcbart, M.K., Mishkin, M. and Rosvold, H.E. (1965). Occipitotemporal corticocortical connections in the Rhesus monkey. Exp. Neurol. II. 245262.CrossRefGoogle Scholar
Lang Worthy, O. (1933). Development of behaviour patterns and myelination of the nervous system in the human fetus and infant. Contrib. Embryol. 139. 157.Google Scholar
Levay, S., Hubel, D.H. and Wiesel, T.N. (1975). The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J. Comp. Neurol. 159, 559576.CrossRefGoogle ScholarPubMed
Libet, B. (1966). Brain stimulation and the threshold of conscious experience. In: Brain and Conscious Experience (Ed. Eccles, J.C.) pp. 165181. Berlin. Heidelberg, New York: Springer.Google Scholar
Libet, B. (1973). Electrical stimulation ol cortex in human subjects, and conscious aspects. In: Handbook of Sensory Physiology, vol. 2. (Ed. Iggo, A.) pp. 743790. Berlin, Heidelberg, New York: Springer (quoted from Eccles, 1977, pp. 256257.)Google Scholar
Loos, H. van der and Woolsey, T. A. (1973). Somatosensory cortex: structural alterations following early injury to sense organs. Science 179, 395398.CrossRefGoogle ScholarPubMed
Lorente De Nó, R. (1949). Architectonics and structure of the cerebral cortex. In: Physiology of the Nervous System (Ed. Fulton, J.F.) 3rd. ed., pp. 288330. New York: Oxford University Press.Google Scholar
Lund, J.S. (1973). Organization of neurons in the visual cortex, area 17. of the monkey (Macaca mulatta). J. Comp. Neurol. 159, 305334.CrossRefGoogle Scholar
Marin-Padilla, M. (1970). Prenatal and early postnatal ontogenesis of the human motor cortex: A Golgi study. II. The basket-pyramidal system. Bruin Res. 23, 185191.CrossRefGoogle ScholarPubMed
Marshall, W.H. and Talbot, S.A. (1942). Recent evidence for neural mechanisms in vision leading to a general theory of sensory acuity. Biol. Sympos. 7, 117164.Google Scholar
Mcfie, J. (1961). Recent advances in phrenology. Lancet 2. 360363.CrossRefGoogle ScholarPubMed
Meyer, A. (1971). Historical Aspects of Cerebral Anatomy. London: Oxford University Press.Google Scholar
Meyer, A. (1974). The frontal lobe syndrome, the aphasias and related conditions a contribution to the history of cortical localization. Brain 97, 565600.CrossRefGoogle Scholar
Mills, C.K. and FRAZIER, C.H. (1905–1906). The motorarea of the human cerebrum. Its position and its subdivisions. with some discussions of the surgery of this area. Univ. Pennsylvania Med. Bull. 18, 135147.Google Scholar
Mishkin, M. (1954). Visual discrimination performance following partial ablations of the temporal lobe: II. Ventral surface vs hippocampus. J. Comp. Physiol. Psychol. 47. 187193.CrossRefGoogle ScholarPubMed
Mishkin, M. and Pribram, K.H. (1954). Visual discrimination performance following partial ablations of the temporal lobe: I. Ventral surface vs lateral. J. Comp. Physiol. Psychol. 47. 1420.CrossRefGoogle Scholar
Molliver, M.E. and Loos, H. van der (1969). The synaptic strata of the somesthetic cortex in neonatal dog. Anat. Record. 163. 317318.Google Scholar
Monakow, C., von (1911). Lokalisation der Hirnfunktionen. J. Psychol, and Neurol. 17. 185200. (transl, by Bonìn, G. von, 1960, in: Some Papers on the Cerebral Cortex, pp. 231250).Google Scholar
Mountcastle, V.B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20, 408432.CrossRefGoogle ScholarPubMed
Mountcastle, V.B. (1975). The Dean’s Lecture: The view from within: pathways to the study of perception. The Johns Hopkins Med. J. 136, 109131.Google Scholar
Mountcastle, V.B. (1978). Brain mechanisms for directed attention (Sherrington Memorial Lecture). J.R. Soc. Medicine 71, 1428.CrossRefGoogle Scholar
Mountcastle, V.B., Lynch, J.C.Georgopoulos, A., Sacata, H. and Acuna, C., (1975). Posterior parietal association cortex of the monkey: command functions for operations within cxtrapersonol space. J. Neurophysiol. 38, 871908.CrossRefGoogle ScholarPubMed
Munk, H. (1890). über die Funktionen der Grosshirnrinde. Gesammelie Mittheilungen aus des Jahrcn 1877–1880. (second ed., first published 1881). Berlin: Hirschwald.Google Scholar
Nauta, W.J.H. (1971). The problem of the frontal lobe: A reinterpretation. J. Psychiat. Research 8. 167187.CrossRefGoogle ScholarPubMed
Pandya, D.N., Hallett, M. and Mukherjee, S.K. (1969). Intra- and interhemispheric connections of the neocortical auditory system in the Rhesus monkey. Brain Res. 14. 4965.CrossRefGoogle ScholarPubMed
Pandya, D.N. and Kuypers, H.G.J.M. (1969). Corticocortical connections in the rhesus monkey. Brain Res. 13. 1336.CrossRefGoogle ScholarPubMed
Penfield, W. (1958). Centrencephalic integrating system. Brain 81,231242.CrossRefGoogle ScholarPubMed
Pfeifer, R.A. (1921). Die Lokalisation der Tonskala innerhalb der kortikalen Horsphare des Menschen. Mschr. Psychiat. Neurol. 50. 748; 99108.CrossRefGoogle Scholar
Pfeifer, R.A. (1930). Necrolog. Paul Flechsig. Sein Lehcn und Wirken. Schweiz. Arch. Neurol. Psychiat. 26. 258264.Google Scholar
Pfeifer, R.A. (1936). Pathologic der Hörstrahlung und der corticalen Horsphare. In: Handbuch der Neurologic. (Eds. Bumke, O. and Forster, O.) Berlin: Springer, vol. 6. 533626.Google Scholar
Phillips, C.G. and Porter, R. (1977). Corticospinal Neurones. Their Role in Movement. London, New York, San Francisco: Acad, press.Google ScholarPubMed
Phillips, C.G., Powell, T.P.S. and Wiesendanger, M. (1971). Projection from low-threshold muscle afférents of hand and forearm to area 3a of baboon’s cortex. J. Physiol. 217, 419446.CrossRefGoogle ScholarPubMed
Piercy, M. (1964). The effects of cerebral lesions on intellectual function. Br. J. Psychiat. 110. 310352.CrossRefGoogle ScholarPubMed
Powell, T.P.S. and Mountcastle, V.B. (1959). The cytoarchitecture of the postcentral gyrus of the monkey macaca mulatta. Johns Hopkins Hosp. Bull. 105. 108132.Google ScholarPubMed
Pribram, K.H. (1970). Introduction to the discussion on neural subsystems. In: The Neurosciences Second Study Program (Ed. Schmitt, F.O.) p. 187. New York: The Rockefeller University Press.Google Scholar
Ramón, YCajal, S. (1899). Estudios sobra ta corte/za cerebral humana. Rev. Trimestral Micrographia 4, 163 (transl, into German by Bresler, J.. 1900, as: Studien über die Hirnrinde des Menschen, Heft 1. pp. 177. Leipzig: Barin).Google Scholar
Ramón, YCajal, S. (1904). Textura del sistema nervioso del Hombre y de los Vertebrados. Vol. 2. Madrid: Moya.Google Scholar
Ramón, YCajal, S. (1911). Histologie du Système Nerveux de L’homme et des Vertebrates. Vol. 2, chapter 36. (transl. by Bonin, G. von, 1960, In: Some Papers on the Cerebral Cortex, pp. 251282).Google Scholar
Rose, M. (1927). Gyrus limbìcus anterior and rctrosplenialis (cortex holoprotopiychus quinqucstriatus). J. Psychol. Neurol. 35, 65173.Google Scholar
Russell, W.R. (1948). Functions of the frontal lobes. Lancet 1. 356360.CrossRefGoogle ScholarPubMed
Scheibel, M.E. and Scheibel, A.B. (1958). Structural substrates for integrative patterns in the brain-stem reticular core. In: Reticular Formation of the Brain. (Eds. Jasper, H.H.. Proctor, L.D.Knighton, R.S.. Noshay, W.C.. Ostello, R.T.) Boston (Mass.): Little, Brown & Co.Google Scholar
Scheibel, M.E. and Scheibel, A.B. (1969). Terminal patterns in cat spinal cord. Ill: Primary afferent collaterals. Brain Res. 13,417443.CrossRefGoogle Scholar
Scheibel, M.E. and Scheibel, A.B. (1970). Elementary processes in selected thalamic and cortical subsystems the structural substrates. In; The Neurosciences Second Study Program (Ed. Schmitt, F.O.), pp. 443457. New York: Rockefeller University Press.Google Scholar
Schroder, P. (1930). Paul Flechsig. Arch. Psychiat. Nervenkr. 91. 18.CrossRefGoogle Scholar
Sholl, D.A. (1955). The organization of the visual cortex in the cat. J. Anat. Lond., 89, 3346.Google ScholarPubMed
Sholl, D.A. (1956). The Organization of the Cerebral Cortex. London: Methucn.Google ScholarPubMed
Sperry, R.W. (1974). Lateral specialization in the surgically separated hemispheres. In: The Neurosciences Third Study Program (Eds. Schmitt, F.O. and Worden, F.G.) pp. 519. Cambridge (Mass.) and London: The MIT Press.Google Scholar
Szentágothal, J. (1965a). The use of degeneration methods in the investigation of short neuronal connections. In: Degeneration Patterns in the Nervous System (Eds. Singer, M. and Schadé, J.P.). pp. 1432. Amsterdam: Elsevier.Google Scholar
Szentágothal, J. (1965b). The use of degeneration methods in the investigation of short neuronal connections. Progr. Brain Res. 14. 132.CrossRefGoogle Scholar
Szentágothal, J. (1975). The ‘module concept’ in cerebral cortex architecture. Brain Res. 95. 475496.CrossRefGoogle Scholar
Vogt, C., & O. (1919). Allgemeinere Ergebnisse unsercr Hirnforschung. J. Psychol. Neurol. (Suppl.) 25. 279462.Google Scholar
Vogt, M. (1928). Ober omnilaminare Structurdifferencen und lineare Grenzen der architektonischen Felder der hinteren Zentralwindungdas Menschen. J. Psychol. Neurol. 35. 177193.Google Scholar
Szentágothai, J. and Arbib, M.A. (1975). Conceptual Models of Neural Organization. Cambridge (Mass.) and London: The MIT Press.Google Scholar
Tombou, T. (1972). A Golgi Analysis of the Sensory-motor Cortex, In: Synchronization of E. E.G. Activity in Epileptics (Eds. Pctsche, H. and Brazier, M.A:B.) pp. 2536. Wien. New York: Springer.CrossRefGoogle Scholar
Vogt, O. (1901). Zur Hirnfaserlchre. Allgem. Z. Psychiat. Neurol. 58. 707709.Google Scholar
Vogt, O. (1903). Zur anatomischen Gliederung des cortex cerebri. J. Psychol. Neurol. 2. 160180.Google Scholar
Weiskrantz, L. (1974). The interaction between occipital and temporal cortex in vision. In: The Neurosciences Third Study Program (Eds. Schmitt, F.O. and Worden, F.G.) pp. 189204. Cambridge (Mass.) and London: The MIT Press.Google Scholar
Whittacker, V.P. and Gray, E.G. (1962). The synapse: biology and morphology. Br. Med. Bull. 18. 223228.CrossRefGoogle Scholar
Wiesel, T.N., Hubel, D.H. and Lam, D. (1974). Autoradiographic demonstration of ocular dominance columns in the monkey striate cortex by means of transsynaptic transport. Brain Res. 79. 273279.CrossRefGoogle Scholar
Wiesendanger, M. (1973). Input from muscle and cutaneous nerves of the hand and forearm to neurones of the precentral gyrus of baboons and monkevs. J. Phvsiol. 228, 203219.Google Scholar
Woolsey, T.A. and Loos, H. van der (1970). The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete units. Brain Res. 17. 205242.Google ScholarPubMed
Yakovlev, P.I. (1962). Morphological criteria of growth and maturation of the nervous system in man. Res. Publ. Ass. Ncrv. Ment. Dis. vol. 39. 346.Google ScholarPubMed
Yakovlev, P.I. and Lecours, A.R. (1967). The myelogenetic cycles of regional maturation of the brain. In: Regional Development of the Brain in Early Life (Ed. Minkowski, A.) pp. 370. Oxford. Edinburgh: Blackwell Scientific Publications.Google Scholar
Young, J.Z. (1964). A Model of the Brain. Oxford: Clarendon Press.Google Scholar
Young, J.Z. (1978). Programs of the Brain. Oxford: University Press.Google Scholar
Young, J.Z. (1979). Learning as a process of selection and amplification: H ughlings Jackson Lecture. J.R. Soc. Mvd. 72, 801814.CrossRefGoogle Scholar