Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T12:30:19.210Z Has data issue: false hasContentIssue false

Prevalence of Nonlesional Focal Epilepsy in an Adult Epilepsy Clinic

Published online by Cambridge University Press:  23 September 2014

Dang Khoa Nguyen*
Affiliation:
Service de Neurologie, Université de Montréal, Montréal, QC, Canada
Manuela Temgoua Mbacfou
Affiliation:
Hôpital Notre-Dame du CHUM, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
Dong Bach Nguyen
Affiliation:
Service de Neurologie, Université de Montréal, Montréal, QC, Canada
Maryse Lassonde
Affiliation:
Centre de Recherche de Neuropsychologie et Cognition, Université de Montréal, Montréal, QC, Canada
*
Service de Neurologie, Hôpital Notre-Dame du CHUM, 1560 rue Sherbrooke Est, Montréal, Québec, H2L 4M1, Canada. Email: d.nguyen@umontreal.ca.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Purpose:

To evaluate the prevalence of nonlesional focal epilepsy in an adult epilepsy clinic and its refractoriness to antiepileptic drug therapy.

Background:

Focal epilepsy is frequently, but not always, associated with structural epileptogenic lesions identifiable on magnetic resonance imaging (MRI).

Methods:

We analyzed the data from all patients evaluated at an adult epilepsy clinic from January 2002 to December 2011. Clinical and paraclinical findings were used to diagnose focal epilepsy. Magnetic resonance imaging were reviewed and classified as normal, with an epileptogenic lesion, or with a lesion of unclear epileptogenicity. Epileptogenic lesions were further categorized as tumours, vascular malformations, gliosis (including hippocampal atrophy/sclerosis), and malformations of cortical development. Our study group included patients with no lesions on MRI. Pharmacoresistance of patients with nonlesional focal epilepsy was assessed using the ILAE and Perucca's criterias.

Results:

Out of 1521 patients evaluated (mean age 44 years; range 14-93 years), 843 had focal epilepsy. Magnetic resonance imaging data, available for 806 (96%) subjects, showed epileptogenic lesions in 65%, no obvious epileptogenic lesions in 31% and lesions of unclear epileptogenicity in 4%. Magnetic resonance imaging-identified lesions included gliosis due to an acquired insult (52% including 17% of hippocampal atrophy or sclerosis), tumours (29%), vascular malformations (16%) and malformations of cortical development (10%). Fifty-two percent of nonlesional focal epileptic patients were drug-refractory.

Conclusion:

In a tertiary epilepsy clinic, close to a third of patients with focal epilepsy were found to be nonlesional, half of which were drug-resistant.

Résumé:

Résumé: Objectif:

Le but de l'étude était d'évaluer la prévalence de l'épilepsie focale non-lésionnelle dans une clinique d'épilepsie pour adultes et sa résistance au traitement par la médication antiépileptique.

Contexte:

L'épilepsie focale est souvent, mais pas toujours, associée à des lésions épileptogènes structurales identifiables à l'imagerie par résonance magnétique (IRM).

Méthode:

Nous avons analysé les données des dossiers de tous les patients évalués à une clinique d'épilepsie pour adultes de janvier 2002 à décembre 2011. Les observations cliniques et paracliniques ont été utilisées pour poser un diagnostic d'épilepsie focale. Nous avons révisé les observations d'IRM et nous les avons classifiées comme étant normales, mettant en évidence une lésion épileptogène ou démontrant une lésion dont l'épileptogénicité n'était pas claire. Les lésions épileptogènes étaient ensuite catégorisées comme étant des tumeurs, des malformations vasculaires, de la gliose (incluant l'atrophie ou la sclérose de l'hippocampe) et des malformations du développement cortical. Notre échantillon de patients comprenait des patients sans lésion à l'IRM. La pharmacorésistance des patients atteints d'une épilepsie focale sans lésion a été évaluée au moyen des critères de l'ILAE et de Perucca.

Résultats:

Parmi les 1 521 patients évalués, qui étaient âgés de 14 à 93 ans et dont l'âge moyen était de 44 ans, 843 avaient une épilepsie focale. Les données d'IRM, qui étaient disponibles pour 806 patients (96%), avaient démontré des lésions épileptogènes chez 65%, pas de lésion épileptogène évidente chez 31% et des lésions dont l'épileptogénicité était douteuse chez 4%. Les lésions identifiées à l'IRM étaient de la gliose due à une lésion acquise (52%, dont 17% d'atrophie ou de sclérose hippocampique), des tumeurs (29%), des malformations vasculaires (16%) et des malformations du développement cortical (10%). Cinquante-deux pour cent des patients atteints d'une épilepsie focale non reliée à une lésion étaient résistants au traitement pharmacologique.

Conclusion:

Dans une clinique de soins tertiaires de l'épilepsie, l'épilepsie n'était pas reliée à une lésion chez près du tiers des patients atteints d'une épilepsie focale et la moitié d'entre eux étaient pharmacorésistants.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Dichter, MA. Overview: the neurobiology of epilepsy. In: Engel, J, Pedley, TA, editors. Epilepsy: a comprehensive textbook. 2nd ed. Philadelphia: Lippincott Williams and Wikins; 2008. p. 217–19.Google Scholar
2. Tellez-Zenteno, JF, Pondal-Sordo, M, Matijevic, S, Wiebe, S. National and regional prevalence of self-reported epilepsy in Canada. Epilepsia. 2004;45(12):1623–9.CrossRefGoogle ScholarPubMed
3. Kwan, P, Brodie, MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–19.CrossRefGoogle ScholarPubMed
4. Berg, AT, Berkovic, SF, Brodie, MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010;51(4):676–85.CrossRefGoogle ScholarPubMed
5. Woermann, FG, Vollmar, C. Clinical MRI in children and adults with focal epilepsy: a critical review. Epilepsy Behav. 2009;15(1): 40–9.CrossRefGoogle ScholarPubMed
6. Kwan, P, Arzimanoglou, A, Berg, AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51(6):106977.CrossRefGoogle Scholar
7. Perucca, E. The management of refractory idiopathic epilepsies. Epilepsia. 2001;42(3):31–5.CrossRefGoogle ScholarPubMed
8. Sylaja, PN, Radhakrishnan, K, Kesavadas, C, Sarma, PS. Seizure outcome after anterior temporal lobectomy and its predictors in patients with apparent temporal lobe epilepsy and normal MRI. Epilepsia. 2004;45(7):8038.CrossRefGoogle ScholarPubMed
9. Chapman, K, Wyllie, E, Najm, I, et al. Seizure outcome after epilepsy surgery in patients with normal preoperative MRI. J Neurol Neurosurg Psychiatry. 2005;76(5):710–13.CrossRefGoogle ScholarPubMed
10. Cohen-Gadol, AA, Wilhelmi, BG, Collignon, F, et al. Long-term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis. J Neurosurg. 2006;104(4):513–24.CrossRefGoogle ScholarPubMed
11. Bell, ML, Rao, S, So, EL, et al. Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia. 2009;50 (9):205360.CrossRefGoogle ScholarPubMed
12. RamachandranNair, R, Otsubo, H, Shroff, MM, et al. MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia. 2007;48(1): 149–57.CrossRefGoogle ScholarPubMed
13. Jayakar, P, Dunoyer, C, Dean, P, et al. Epilepsy surgery in patients with normal or nonfocal MRI scans: integrative strategies offer long-term seizure relief. Epilepsia. 2008;49(5):758–64.CrossRefGoogle ScholarPubMed
14. Bien, CG, Szinay, M, Wagner, J, Clusmann, H, Becker, AJ, Urbach, H. Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging-negative epilepsies. Arch Neurol. 2009;66(12):1491–9.CrossRefGoogle ScholarPubMed
15. Wetjen, NM, Marsh, WR, Meyer, FB, et al. Intracranial electroencephalography seizure onset patterns and surgical outcomes in nonlesional extratemporal epilepsy. J Neurosurg. 2009;110(6):114752.CrossRefGoogle ScholarPubMed
16. Ansari, SF, Tubbs, RS, Terry, CL, Cohen-Gadol, AA. Surgery for extratemporal nonlesional epilepsy in adults: an outcome meta-analysis. Acta Neurochir. 2010;152(8):1299–305.CrossRefGoogle ScholarPubMed
17. Funke, ME, Moore, K, Orrison, WW Jr., Lewine, JD. The role of magnetoencephalography in “nonlesional” epilepsy. Epilepsia. 2011;52(4):1014.CrossRefGoogle ScholarPubMed
18. Smith, AP, Sani, S, Kanner, AM, et al. Medically intractable temporal lobe epilepsy in patients with normal MRI: surgical outcome in twenty-one consecutive patients. Seizure. 2011;20(6):4759.CrossRefGoogle ScholarPubMed
19. Steinlein, OK, Mulley, JC, Propping, P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 1995;11(2):2013.CrossRefGoogle ScholarPubMed
20. Kalachikov, S, Evgrafov, O, Ross, B, et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet. 2002;30(3):335–41.CrossRefGoogle ScholarPubMed
21. Scheffer, IE, Phillips, HA, O’Brien, CE, et al. Familial partial epilepsy with variable foci: a new partial epilepsy syndrome with suggestion of linkage to chromosome 2. Ann Neurol. 1998; 44(6):8909.CrossRefGoogle Scholar
22. Xiong, L, Labuda, M, Li, DS, et al. Mapping of a gene determining familial partial epilepsy with variable foci to chromosome 22q11-q12. Am J Hum Genet. 1999;65(6):1698–710.CrossRefGoogle ScholarPubMed
23. Berkovic, SF, Kennerson, ML, Howell, RA, Scheffer, IE, Hwang, PA, Nicholson, GA. Phenotypic expression of benign familial neonatal convulsions linked to chromosome 20. Arch Neurol. 1994;51(11):1125–8.CrossRefGoogle ScholarPubMed
24. Cendes, F, Lopes-Cendes, I, Andermann, E, Andermann, F. Familial temporal lobe epilepsy: a clinically heterogeneous syndrome. Neurology. 1998;50(2):5547.CrossRefGoogle ScholarPubMed
25. Scott, CA, Fish, DR, Smith, SJ, et al. Presurgical evaluation of patients with epilepsy and normal MRI: role of scalp video-EEG telemetry. J Neurol Neurosurg Psychiatry. 1999;66(1):6971.CrossRefGoogle ScholarPubMed
26. Berg, AT, Vickrey, BG, Langfitt, JT, et al. The multicenter study of epilepsy surgery: recruitment and selection for surgery. Epilepsia. 2003;44(11):142533.CrossRefGoogle ScholarPubMed
27. Berkovic, SF, McIntosh, AM, Kalnins, RM, et al. Preoperative MRI predicts outcome of temporal lobectomy: an actuarial analysis. Neurology. 1995;45(7):135863.CrossRefGoogle ScholarPubMed
28. Wiebe, S, Blume, WT, Girvin, JP, Eliasziw, M. Effectiveness, Efficiency of Surgery for Temporal Lobe Epilepsy Study G. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311–18.CrossRefGoogle Scholar
29. Alarcon, G, Valentin, A, Watt, C, et al. Is it worth pursuing surgery for epilepsy in patients with normal neuroimaging? J Neurol Neurosurg Psychiatry. 2006;77(4):474–80.CrossRefGoogle ScholarPubMed
30. Cukiert, A, Buratini, JA, Machado, E, et al. Results of surgery in patients with refractory extratemporal epilepsy with normal or nonlocalizing magnetic resonance findings investigated with subdural grids. Epilepsia. 2001;42(7):889–94.CrossRefGoogle ScholarPubMed
31. McGonigal, A, Bartolomei, F, Regis, J, et al. Stereoelectro-encephalography in presurgical assessment of MRI-negative epilepsy. Brain. 2007;130(Pt 12):316983.CrossRefGoogle Scholar
32. Phal, PM, Usmanov, A, Nesbit, GM, et al. Qualitative comparison of 3-T and 1.5-T MRI in the evaluation of epilepsy. AJR Am J Roentgenol. 2008;191(3):8905.CrossRefGoogle Scholar
33. Nguyen, DK, Rochette, E, Leroux, JM, et al. Value of 3.0 T MR imaging in refractory partial epilepsy and negative 1.5 T MRI. Seizure. 2010;19(8):4758.CrossRefGoogle Scholar
34. Bernasconi, A, Bernasconi, N, Bernhardt, BC, Schrader, D. Advances in MRI for ‘cryptogenic’ epilepsies. Nat Rev Neurol. 2011;7(2): 99108.CrossRefGoogle ScholarPubMed