Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T18:15:49.010Z Has data issue: false hasContentIssue false

Radiosurgical Retreatment for Brain Arteriovenous Malformation

Published online by Cambridge University Press:  02 December 2014

Javad Mirza-Aghazadeh
Affiliation:
Division of Neurosurgery, Sunnybrook and Women's College Health Science Centre, Department of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Centre, University of Toronto, Ontario, Canada
Yuri M. Andrade-Souza
Affiliation:
Division of Neurosurgery, Sunnybrook and Women's College Health Science Centre, Department of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Centre, University of Toronto, Ontario, Canada
Gelareh Zadeh
Affiliation:
Division of Neurosurgery, Sunnybrook and Women's College Health Science Centre, Department of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Centre, University of Toronto, Ontario, Canada
Daryl Scora
Affiliation:
Division of Neurosurgery, Sunnybrook and Women's College Health Science Centre, Department of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Centre, University of Toronto, Ontario, Canada
May N. Tsao
Affiliation:
Division of Neurosurgery, Sunnybrook and Women's College Health Science Centre, Department of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Centre, University of Toronto, Ontario, Canada
Michael L. Schwartz*
Affiliation:
Division of Neurosurgery, Sunnybrook and Women's College Health Science Centre, Department of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Centre, University of Toronto, Ontario, Canada
*
Division of Neurosurgery, Suite A129, Sunnybrook Health Science Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

To analyze our experience with a second radiosurgical treatment for brain arteriovenous malformations (BAVMs) after an unsuccessful first radiosurgical treatment.

Methods:

Between 1993 and 2000, 242 patients were treated by the Toronto Sunnybrook Regional Cancer Center using a LINAC system. Fifteen of these patients required a second radiosurgical intervention due to the failure of the first procedure. Data was collected on baseline patient characteristics, BAVM features, radiosurgery treatment plan and outcomes. Brain arteriovenous malformation obliteration was determined by follow-up MRI and angiography and the obliteration prediction index (OPI) calculated according to a previously established formula.

Results:

The median interval between the first and second treatment was 46 months (range 39-109). The median follow-up after the second procedure was 39 months (range 26 to 72). The mean BAVM volume before the first treatment was 8.9cm3 (range 0.3-21) and before the second treatment was 3.6cm3 (range 0.2-11.6). The mean marginal dose during the first treatment was 18Gy (range 12-25) and during the second treatment was 16Gy (range 12-20). After the second treatment, nine patients had obliteration of their BAVM confirmed by angiography and one patient had obliteration confirmed by MRI, resulting in an obliteration rate of 66.6%, which is very comparable to that predicted by the OPI (65%). After the second treatment two patients had a radiation-induced complication (13.3%).

Conclusion:

Retreatment of BAVM using a second radiosurgery procedure is a safe and effective option that offers the same rate of success as the initial radiosurgery and an acceptable risk of radiation-induced complication.

Résumé:

RÉSUMÉ: Objectif:

Analyser notre expérience de l’administration d’un second traitement radiochirurgical chez des patients atteints de malformations artérioveineuses cérébrales (MAVC) quand un premier traitement radiochirurgical a échoué.

Méthodes:

242 patients ont été traités au Sunnybrook Regional Cancer Center de Toronto au moyen du système LINAC entre 1993 et 2000. On a dû avoir recours à une seconde intervention radiochirurgicale chez quinze de ces patients, vu l’échec de la première intervention. Nous avons recueilli les données initiales sur les caractéristiques des patients, les modalités du plan de traitement radiochirurgical et les résultats. L’oblitération des MAVC était évaluée par IRM et angiographie après le traitement et l’indice de prédiction d’oblitération (IPO) était calculé selon une formule pré-établie.

Résultats:

L’intervalle médian entre le premier et le second traitement était de 46 mois (écart de 39 à 109 mois). La durée médiane du suivi après la deuxième intervention était de 39 mois (écart de 26 à 72 mois). Le volume moyen de la MAVC avant le premier traitement était de 8,9 cm3 (écart de 0,3 à 21 cm3) et avant le second traitement de 3,6 cm3 (écart de 0,2 à 11, 6cm3). La dose marginale moyenne pendant le premier traitement était de 18 Gy (écart de 12 à 25 Gy) et de 16 Gy (écart de 12 à 20 Gy) pendant le second. Neuf patients avaient une oblitération de leur MAVC confirmée par angiographie après le second traitement et un patient avait une oblitération confirmée par IRM, soit un taux d’oblitération de 66,6%. Ce taux est comparable à celui prédit par l’IPO qui était de 65%. Après le second traitement, deux patients ont présenté une complication due à l’irradiation (13%).

Conclusion:

Le recours à un second traitement radiochirurgical dans les MAVC est une option sûre et efficace qui présente le même taux de succès que le traitement radiochirurgical initial ainsi qu’un risque acceptable de complications induites par l’irradiation.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. Friedman, WA, Blatt, DL, Bova, FJ, et al. The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg. 1996;84(6):9129.Google Scholar
2. Reporting terminology for brain arteriovenous malformation clinical and radiographic features for use in clinical trials. Stroke. 2001;32(6):143042.Google Scholar
3. Berman, MF, Sciacca, RR, Pile-Spellman, J, et al. The epidemiology of brain arteriovenous malformations. Neurosurgery. 2000;47(2):38996; discussion 397.Google Scholar
4. Aoki, Y, Nakagawa, K, Tago, M, et al. Clinical evaluation of gamma knife radiosurgery for intracranial arteriovenous malformation. Radiat Med. 1996;14(5):2658.Google Scholar
5. Friedman, WA, Bova, FJ, Bollampally, S, et al. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery. 2003;52(2):296307; discussion 307-298.CrossRefGoogle ScholarPubMed
6. Gallina, P, Merienne, L, Meder, JF, et al. Failure in radiosurgery treatment of cerebral arteriovenous malformations. Neurosurgery. 1998;42(5):9961002; discussion 1002-1004.Google Scholar
7. Pollock, BE, Gorman, DA, Coffey, RJ. Patient outcomes after arteriovenous malformation radiosurgical management: results based on a 5- to 14-year follow-up study. Neurosurgery. 2003;52(6):12916; discussion 1296-7.Google Scholar
8. Karlsson, B, Lindquist, C, Steiner, L. Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery. 1997;40(3):42530; discussion 430-421.Google ScholarPubMed
9. Young, C, Summerfield, R, Schwartz, M, et al. Radiosurgery for arteriovenous malformations: the University of Toronto experience. Can J Neurol Sci. 1997;24(2):99105.Google Scholar
10. Yamamoto, M, Jimbo, M, Hara, M, et al. Gamma knife radiosurgery for arteriovenous malformations: long-term follow-up results focusing on complications occurring more than 5 years after irradiation. Neurosurgery. 1996;38(5):90614.Google Scholar
11. Coffey, RJ, Nichols, DA, Shaw, EG. Stereotactic radiosurgical treatment of cerebral arteriovenous malformations. Gamma Unit Radiosurgery Study Group. Mayo Clin Proc. 1995;70(3):21422.Google Scholar
12. Colombo, F, Pozza, F, Chierego, G, et al. Linear accelerator radiosurgery of cerebral arteriovenous malformations: current status. Acta Neurochir Suppl (Wien). 1994;62:59.Google Scholar
13. Betti, OO, Munari, C, Rosler, R. Stereotactic radiosurgery with the linear accelerator: treatment of arteriovenous malformations. Neurosurgery. 1989;24(3):31121.Google Scholar
14. Yamamoto, M, Hara, M, Ide, M, et al. Radiation-related adverse effects observed on neuro-imaging several years after radiosurgery for cerebral arteriovenous malformations. Surg Neurol. 1998;49(4):38597; discussion 397-388.Google Scholar
15. Flickinger, JC, Kondziolka, D, Lunsford, LD, et al. A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys. 1999;44(1):6774.Google Scholar
16. Ellis, TL, Friedman, WA, Bova, FJ, et al. Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg. 1998;89(1):10410.Google Scholar
17. Friedman, WA, Bova, FJ, Mendenhall, WM. Linear accelerator radiosurgery for arteriovenous malformations: the relationship of size to outcome. J Neurosurg. 1995;82(2):1809.Google Scholar
18. Kwon, Y, Jeon, SR, Kim, JH, et al. Analysis of the causes of treatment failure in gamma knife radiosurgery for intracranial arteriovenous malformations. J Neurosurg. 2000;93 Suppl 3: S1046.Google Scholar
19. Pollock, BE, Kondziolka, D, Lunsford, LD, et al. Repeat stereotactic radiosurgery of arteriovenous malformations: factors associated with incomplete obliteration. Neurosurgery. 1996;38(2):31824.Google Scholar
20. Flickinger, JC, Kondziolka, D, Lunsford, LD, et al. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys. 2000;46(5):11438.Google Scholar
21. Flickinger, JC, Kondziolka, D, Maitz, AH, et al. An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol. 2002;63(3):34754.Google Scholar
22. Flickinger, JC, Kondziolka, D, Pollock, BE, et al. Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys. 1997;38(3): 48590.Google Scholar
23. Flickinger, JC, Pollock, BE, Kondziolka, D, et al. A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys. 1996;36(4):873879.Google Scholar
24. Chang, JH, Chang, JW, Park, YG, et al. Factors related to complete occlusion of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 2000;93 Suppl 3:S96101.Google Scholar
25. Karlsson, B, Lax, I, Soderman, M. Factors influencing the risk for complications following Gamma Knife radiosurgery of cerebral arteriovenous malformations. Radiother Oncol. 1997;43(3): 27580.Google Scholar
26. Karlsson, B, Lax, I, Soderman, M. Can the probability for obliteration after radiosurgery for arteriovenous malformations be accurately predicted? Int J Radiat Oncol Biol Phys. 1999;43(2):3139.Google Scholar
27. Mavroidis, P, Theodorou, K, Lefkopoulos, D, et al. Prediction of AVM obliteration after stereotactic radiotherapy using radiobiological modelling. Phys Med Biol. 2002;47(14):247194.Google Scholar
28. Pollock, BE, Flickinger, JC, Lunsford, LD, et al. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery. 1998;42(6):123944; discussion 1244-1237.Google Scholar
29. Podgorsak, EB, Olivier, A, Pla, M, et al. Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1988;14(1):11526.Google Scholar
30. Souhami, L, Olivier, A, Podgorsak, EB, et al. Radiosurgery of cerebral arteriovenous malformations with the dynamic stereotactic irradiation. Int J Radiat Oncol Biol Phys. 1990;19(3):77582.Google Scholar
31. O’Brien, PF, Gillies, BA, Schwartz, M, et al. Radiosurgery with unflattened 6-MV photon beams. Med Phys. 1991;18(3):51921.Google Scholar
32. Gillies, BA, O’Brien, PF, McVittie, R, et al. Engineering modifications for dynamic stereotactically assisted radiotherapy. Med Phys. 1993;20(5):14915.CrossRefGoogle ScholarPubMed
33. Olivier, A, Bertrand, G. Stereotaxic device for percutaneous twist-drill insertion of depth electrodes and for brain biopsy. Technical note. J Neurosurg. 1982;56(2):3078.Google ScholarPubMed
34. Schwartz, M, Sixel, K, Young, C, et al. Prediction of obliteration of arteriovenous malformations after radiosurgery: the obliteration prediction index. Can J Neurol Sci. 1997;24(2):1069.Google Scholar
35. Andrade-Souza, YM, Zadeh, G, Ramani, R, et al. Testing the radiosurgery-based arteriovenous malformation score and the modified Spetzler-Martin grading system to predict radiosurgical outcome. J. Neurosurg. 2005;103:6428.Google Scholar
36. Karlsson, B, Kihlstrom, L, Lindquist, C, et al. Gamma knife surgery for previously irradiated arteriovenous malformations. Neurosurgery. 1998;42(1):15; discussion 5-6.Google Scholar
37. Maesawa, S, Flickinger, JC, Kondziolka, D, et al. Repeated radiosurgery for incompletely obliterated arteriovenous malformations. J Neurosurg. 2000;92(6):96170.Google Scholar
38. Foote, KD, Friedman, WA, Ellis, TL, et al. Salvage retreatment after failure of radiosurgery in patients with arteriovenous malformations. J Neurosurg. 2003;98(2):33741.Google Scholar
39. Schlienger, M, Nataf, F, Lefkopoulos, D, et al. Repeat linear accelerator radiosurgery for cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2003;56(2): 52936.Google Scholar
40. Lax, I, Karlsson, B. Prediction of complications in gamma knife radiosurgery of arteriovenous malformation. Acta Oncol. 1996;35(1):4955.Google Scholar
41. Kondziolka, D, McLaughlin, MR, Kestle, JR. Simple risk predictions for arteriovenous malformation hemorrhage. Neurosurgery. 1995;37(5):8515.Google Scholar
42. Brown, RD Jr. Simple risk predictions for arteriovenous malformation hemorrhage. Neurosurgery. 2000;46(4):1024.Google Scholar
43. Al-Shahi, R, Warlow, C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain. 2001;124(Pt 10):190026.Google Scholar
44. Mast, H, Young, WL, Koennecke, HC, et al. Risk of spontaneous haemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet. 1997;350(9084):10658.Google Scholar
45. Kjellberg, RN, Hanamura, T, Davis, KR, et al. Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med. 1983;309(5):26974.Google Scholar
46. Steinberg, GK, Fabrikant, JI, Marks, MP, et al. Stereotactic heavy-charged-particle arteriovenous malformations. N Engl J Med. 1990;323(2): 96101.Google Scholar
47. Colombo, F, Pozza, F, Chierego, G, et al. Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery. 1994;34(1):1420; discussion 20-11.Google Scholar
48. Karlsson, B, Lindquist, C, Steiner, L. Effect of Gamma Knife surgery on the risk of rupture prior to AVM obliteration. Minim Invasive Neurosurg. 1996;39(1):217.Google Scholar
49. Yamamoto, Y, Coffey, RJ, Nichols, DA, et al. Interim report on the radiosurgical treatment of cerebral arteriovenous malformations. The influence of size, dose, time, and technical factors on obliteration rate. J Neurosurg. 1995;83(5):8327.Google Scholar
50. Steinberg, GK, Chang, SD, Levy, RP, et al. Surgical resection of large incompletely treated intracranial arteriovenous malformations following stereotactic radiosurgery. J Neurosurg. 1996; 84(6):9208.Google Scholar