Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T09:08:14.525Z Has data issue: false hasContentIssue false

Recent Progress: Supersensitivity of Central Neurons — A Brief Review of an Emerging Concept

Published online by Cambridge University Press:  18 September 2015

G.G. Yarbrough
Affiliation:
Department of Physiology, University of Saskatchewan, Saskatoon, Canada
J.W. Phillis*
Affiliation:
Department of Physiology, University of Saskatchewan, Saskatoon, Canada
*
Department of Physiology, University of Saskatchewan, Saskatoon, Canada S7N 0W0
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The concept that “denervation” or “pharmacological disuse” supersensitivity develops in central neuronal systems subsequent to sustained attenuation of normal neurohumoral mechanisms is reviewed. Particular emphasis is placed on biochemical and electrophysiological parameters of supersensitivity in dopaminergic (striatal) neuronal systems. The possible applicability of theories invoking changes in receptor sensitivity to the phenomenon of narcotic tolerance and physical dependence and to psychoactive drug therapy is discussed.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1975

References

Anagnoste, B.Shirron, C.Friedman, E.Goldstein, M. (1974). Effect of dibutyryl cyclic adensoine monophosphate on 14 C-dopamine biosynthesis in rat brain striatal slices. J. Pharmacol. Exp. Ther. 191, 370376.Google Scholar
Anden, N.E.Rubenson, A.Fuxe, K.Hokfelt, T. (1967). Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627629.CrossRefGoogle ScholarPubMed
Arbuthnott, G.W.Murray, L.G. (1975). Dopamine receptor agonists in psychiatric disease. Advances in Neurology; Dopaminergic Mechanisms, eds. Calne, D.Chase, T.N.Barbeau, A. Vol. 9, p. 345348, Raven Press, New York.Google Scholar
Axelrod, J. (1971). Noradrenaline: fate and control of its biosynthesis, Science 173, 598606.CrossRefGoogle ScholarPubMed
Axelsson, J.Thesleff, S. (1959). A study of supersensitivity in denervated mammalian skeletal muscle. J. Physiol. London, 147, 178193.CrossRefGoogle ScholarPubMed
Bradley, P.B. and Dray, A. (1974). The effects of microiontophoretically applied morphine and transmitter substances in rats during chronic treatment and after withdrawal from morphine. Br. J. Pharmac. 51, 104106.CrossRefGoogle ScholarPubMed
Cannon, W.B. (1939). A law of denervation. Am. J. Med. Sci. 198, 737750.CrossRefGoogle Scholar
Cannon, W.B.Rosenblueth, A. (1949). The Supersensitivity of Denervated Structures, Macmillan, New York.Google Scholar
Collier, H.O.J. (1968). Supersensitivity and dependence. Nature 220, 228231.CrossRefGoogle ScholarPubMed
Eidelberg, E.Erspamer, R. (1975). Dopaminergic mechanisms of opiate actions in brain. J. Pharmacol. Exp. Ther. 192, 5057.Google ScholarPubMed
Ernst, A.M. (1967). Mode of action oi apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia 10, 316323.CrossRefGoogle Scholar
Fambrough, D.M. (1970). Acetylcholine sensitivity of muscle fiber membranes: Mechanism of regulation by motoneurons. Science 168, 372373.CrossRefGoogle ScholarPubMed
Feltz, P.De Champlain, J. (1972). Enhanced sensitivity of caudate neurons to microiontophoretic injections of dopamine in 6-hydroxydopamine treated cats. Brain Res. 43, 601605.CrossRefGoogle ScholarPubMed
Fibiger, H.C.Grewaal, D.S. (1974). Neurochemical evidence for denervation supersensitivity: the effect of unilateral substantia nigra lesions on apomorphineinduced increases in neostriatal acetylcholine levels. Life Sciences 15, 5763.CrossRefGoogle ScholarPubMed
Fleming, W.W.McPhillips, J.J.Westphall, D.P. (1973). Postjunctional supersensitivity and subsensitivity of excitable tissues to drugs. Revs. of Physiology 68, 56119.Google ScholarPubMed
Gilman, A.G.Shrier, B.K. (1972). Adenosine cyclic 3’, 5’-monophosphate in fetal rat brain cell cultures, Mol. Pharmacol. 8, 410416.Google ScholarPubMed
Guth, L. (1968). “Trophic” influences of nerve on muscle. Physiol. Rev. 48, 645687.CrossRefGoogle ScholarPubMed
Hirsch, J.C.Tassin, J.P.Thierry, A.M. (1975). Loss of noradrenergic and dopaminergic terminals in the chronically isolated cerebral cortex of the cat. Brit. J. Pharmacol. 53 (3), 455.Google ScholarPubMed
Hoffer, B.J.Siggins, G.R.Bloom, F.E. (1971). Studies on norepinephrinecontaining afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res. 25, 523534.CrossRefGoogle ScholarPubMed
Jaffe, J.H.Sharpless, S.K. (1968). Pharmacological denervation supersensitivity in the central nervous system: A theory of physical dependence. In Res. Publ. Ass. nerv. ment. Dis. Vol. XLVI, ed. Wikler, A.226246, Williams and Wilkins Co., Baltimore.Google Scholar
Klawans, H.Cronett, P.Dana, N. (1975). Effect of chronic amphetamine exposure on stereotyped behaviour; implications for pathogenesis of L-DOPA induced dyskinesias. Advances in Neurology; Dopaminergic Mechanisms, eds. Calne, D.Chase, T.N.Barbeau, A. Vol. 9, 105112, Raven Press, New York.Google Scholar
Krnjevic, K.Reiffenstein, R.J.Silver, A. (1970). Chemical sensitivity of neurons in long-isolated slabs of cat cerebral cortex. Electroenceph. clin. Neurophysiol. 29, 269282.CrossRefGoogle ScholarPubMed
Lagerspetz, K.Y.H.Varvikko, T.Tirri, R. (1974). Effects of intraventricular brain injections of neurotransmitters on colonic temperature in morphine-tolerant rats. Life Sciences. 15, 281288.CrossRefGoogle ScholarPubMed
Lamprecht, F.Eichelman, B.Thoa, N.B.Williams, R.B.Kopin, I.J. (1972). Rat fighting behaviour: serum dopamine- -hydroxylase and hypothalamic tyrosine hydroxylase. Science. 177, 12141215.CrossRefGoogle ScholarPubMed
Lomo, T.Rosenthal, J. (1972). Control of ACh sensitivity by muscle activity in the rat. J. Physiol. London, 221, 491513.CrossRefGoogle ScholarPubMed
McGeer, P.L.McGeer, E.G.Singh, V.K.Chase, W.H. (1974). Choline acetyltransferase localization in the central nervous system by immunohistochemistry. Brain Res. 81, 373379.CrossRefGoogle ScholarPubMed
McKenzie, G.M. (1974). The effect of catechol-O-methyl transferase inhibitors on behaviour and domanine metabolism. In Neuropsychopharmacology of Monoamines and Their Regulatory Enzymes, ed. Usdin, E.Raven Press, New York.Google Scholar
Medon, P.J.Blake, D.E. (1973). Temperature effects of intraventricular serotonin norepinephrine and pilocarpine in the morphine-tolerant rat. Life Sci. 13, 13591402.CrossRefGoogle ScholarPubMed
Mishra, R.K.Gardner, E.L.Katzman, R.Makman, M.H. (1974). Enhancement of dopaminestimulated adenylate cyclase activity in rat caudate after lesions in substantia nigra: evidence for denervation supersensitivity. Proc. Nat. Acad. Sci. USA 71 (10), 38833887.CrossRefGoogle ScholarPubMed
Palmer, G.C. (1972). Increased cyclic AMP response to norepinephrine in the rat brain following 6-hydroxydopamine. Neuropharmacology 11, 145149.CrossRefGoogle ScholarPubMed
Phillis, J.W. (1970). The Pharmacology of Synapses, Pergamon Press, London.Google Scholar
Puri, S.K.Lal, H. (1974). Tolerance to the behavioural and neurochemical effects of haloperidol. N-S. Arch. Pharmacol. 282, 156170.Google Scholar
Segal, D.S.Sullivan, J.L.Kuczenski, R.T.Mandell, A.J. (1971). Effects of long-term reserpine on brain tyrosine hydroxylase and behavioral activity. Science 173, 847849.CrossRefGoogle ScholarPubMed
Segal, M.Bloom, F.E. (1974). The action of norepinephrine in the rat hippocampus.I. Iontophoretic studies. Brain Res. 72, 7997.CrossRefGoogle ScholarPubMed
Siggins, G.R.Hoffer, B.J.Ungerstedt, U. (1974). Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons. Life Sci. 15, 779792.CrossRefGoogle ScholarPubMed
Spehlmann, R. (1970). Excitability of partially deafferented cortex. II. Microelectrode studies. Arch. Neurol. 22, 510514.CrossRefGoogle ScholarPubMed
Strada, S.J.Weiss, B. (1974). Increased response to catecholamines of the cyclic AMP system of rat pineal gland induced by decreased sympathetic activity. Arch. Biochem. Biophys. 160, 197204.CrossRefGoogle ScholarPubMed
Thoenen, H. (1970). Induction of tyrosine hydroxylase in peripheral and central adrenergic neurons by cold-exposure of rats. Nature 228, 861862.CrossRefGoogle ScholarPubMed
Trendelenburg, U. (1966). Mechanisms of supersensitivity and subsensitivity to sympathomimetic amines. Pharmacol. Rev. 18, 629640.Google ScholarPubMed
Ungerstedt, U. (1974). Functional dynamics of central monoamine pathways. In The Neurosciences: Third Study Program, Eds., Schmidt, F.O.Worden, F.G.979988, MIT Press, Cambridge, Mass.Google Scholar
Vasquez, B.J.Overstreet, D.H.Russell, R.W. (1974). Psychopharmacological evidence for increase in receptor sensitivity following chronic morphine treatment. Psychopharmacologia 38, 287302.CrossRefGoogle ScholarPubMed
Vetulani, J.Stawarz, R.J.Blumberg, J.B.Sulser, F. (1975). Adaptive mechanisms in the norepinephrine (NE)-sensitive cyclic AMP generating system in the slices of the rat limbic forebrain (LFS). Fed. Proc. 34 (3), 265.Google Scholar
Von Voigtlander, P.F.Boukina, S.J.Johnson, G.A. (1973). Dopaminergic denervation supersensitivity and dopamine stimulated adenyl cyclase activity. Neuropharmacology 12, 10811086.CrossRefGoogle ScholarPubMed
Williams, B.J.Pirch, J.H. (1974). Correlation between brain adenyl cyclase activity and spontaneious motor activity in rats after chronic reserpine treatment. Brain Res. 68, 227234.CrossRefGoogle Scholar
Yarbrough, G.G. (1974). Actions of acetylcholine and atropine on cerebral cortical neurons in chronically morphinetreated rats. Life Sci. 15, 15231529.CrossRefGoogle ScholarPubMed
Yarbrough, G.G. (1975). Supersensitivity of caudate neurons after repeated administration of haloperidol. Europ. J. Pharmacol., in press.Google Scholar