Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T22:58:42.208Z Has data issue: false hasContentIssue false

Regional Cerebral Glucose Metabolism in Turner Syndrome

Published online by Cambridge University Press:  18 September 2015

C. Clark*
Affiliation:
Department of Psychiatry, University of British Columbia
H. Klonoff
Affiliation:
Department of Psychiatry, University of British Columbia
M. Hayden
Affiliation:
Department of Medical Genetics, University of British Columbia
*
Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, B.C., Canada V6T 2S1
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Regional cerebral glucose metabolism was examined in females with Turner syndrome, a sex chromosome abnormality. Previous studies have found a visual/spatial cognitive anomaly in these women but, to date, no abnormalities in brain structure or function have been associated with the condition. In the present study, decreases in regional metabolism were found in the occipital and parietal cortex. The involvement of the occipital cortex, although consistent with the observed cognitive anomalies, has not been suggested previously as an area dysfunction. Because the occipital cortex is a primary sensory cortex, the reduction of glucose metabolism in the parietal cortex may reflect a lack of innervation from the occipital cortex. Besides insight into the functional specialization of the brain, these findings are also consistent with previous reports on animals regarding the effects of estrogen in brain maturation.

Résumé:

RÉSUMÉ:

Nous avons examiné le métabolisme cérébral régional du glucose chez des femmes porteuses du syndrome de Turner, une anomalie des chromosomes sexuels. Des études antérieures ont montré une anomalie cognitive visuo-spatiale chez ces femmes, mais à date, aucune anomalie dans la structure ou la fonction cérébrale n'a été associée à cette condition. Dans la présente étude, nous avons observé des diminutions du métabolisme régional dans le cortex occipital et pariétal. L'atteinte du cortex occipital, bien que compatible avec les anomalies cognitives observées, n'a pas été suggérée précédemment comme étant une dysfonction régionale. Parce que le cortex occipital est un cortex sensoriel primaire, la diminution du métabolisme du glucose dans le cortex pariétal peut refléter un manque d'innervation à partir du cortex occipital. En plus de fournir des indices sur la spécialisation fonctionnelle du cerveau, ces observations sont également compatibles avec des observations antérieures sur les animaux faisant état des effets des estrogènes dans la maturation du cerveau.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1990

References

REFERENCES

1. Turner, H. A syndrome of infantilism, congenital webbed neck and cubitus valgus. Endocrinology 1938; 23: 566574.CrossRefGoogle Scholar
2. Ford, CE. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet 1959; 711713.CrossRefGoogle Scholar
3. Shaffer, J. A specific cognitive deficit observed in gonadal aplasia (Turner’s syndrome). J Clin Psychol 1962; 18: 403406.3.0.CO;2-V>CrossRefGoogle Scholar
4. Alexander, D, Ehrhardt, A, Money, J. Defective figure drawing, geometric and human in Turner’s syndrome. J Nerv Ment Dis 1966; 142: 161167.CrossRefGoogle Scholar
5. Money, J. Turner’s syndrome and parietal lobe function. Cortex 1973; 9: 388393.CrossRefGoogle Scholar
6. Kolb, J, Heaton, R. Lateralized neurologic defecits and psychopathology in a Turner syndrome patient. Arch Gen Psychiatry 1975; 32: 11981220.CrossRefGoogle Scholar
7. Silbert, A, Wolff, P, Lilienthal, J. Spatial and temporal processing in patients with Turner’s syndrome. Behav Genet 1977; 7: 1121.CrossRefGoogle ScholarPubMed
8. McGlone, J. Can spatial deficits in Turner’s syndrome be explained by focal CNS dysfunction or a typical speech lateralization? J Clin Exp Neuropsychol 1985; 7: 375394.CrossRefGoogle ScholarPubMed
9. Reske-Nielsen, E, Christensen, AL, Nielsen, J. A neuropathological and neuropsychological study of Turner's syndrome. Cortex 1982; 18: 181190.CrossRefGoogle ScholarPubMed
10. Buchsbaum, M, Henekin, R, Christiansen, R. Age and sex differences in averaged evoked responses in a normal population with observations on patients with gonadal dysgenesis. Electroencephologr Clin Neurophysiol 1974; 37: 137144.CrossRefGoogle Scholar
11. Huang, S, Phelps, M, Hoffman, E, et al. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol (Endocrinol Metab) 1980; 238: E69–E82.Google ScholarPubMed
12. Tsuboi, T, Nielsen, J, Nagayama, I. Turner’s syndrome: a qualitative and quantitative analysis of EEG background activity. Hum Genet 1988; 78: 206215.CrossRefGoogle ScholarPubMed
13. Evans, B, Harrop, R, Heywood, D, et al. Engineering developments on the UBC-TRIUMF modified PET VI positron emission tomograph. IEEE Transaction of Nuclear Science 1983; NS30: 707710.CrossRefGoogle Scholar
14. Brooks, R. Alternative formula for glucose utilization using labelled deoxyglucose. J Nucl Med 1982; 23: 538539.Google Scholar
15. Sokoloff, L, Reivich, M, Kennedy, C, et al. The 14C deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious anaesthetized albino rat. J Neurochem 1977; 28: 897916.CrossRefGoogle Scholar
16. Pardridge, W, Crane, P, Mietus, L, et al. Kinetics of regional bloodbrain barrier transport and brain phosphorylation of glucose and 2 deoxyglucose in the barbiturate-anaesthetized rat. J Neurochem 1982; 38: 560568.CrossRefGoogle Scholar
17. Clark, C. Minority opinion on the extraction of regional values from functional brain images. J Cereb Blood Flow Metab 1987; 7,2: S13-S16.CrossRefGoogle ScholarPubMed
18. Thompson, J, Thompson, M. Genetics in Medicine, 4th Ed.,Philadelphia, WB Saunders 1986.Google Scholar
19. Bender, B, Puck, M, Salbenblatt, J, et al. Cognitive development of unselected girls with complete and partial X monosomy. Pediatrics 1984; 73: 175182.CrossRefGoogle ScholarPubMed
20. Netley, C, Rovet, J. Atypical hemispheric lateralization in Turner syndrome subjects. Cortex 1982; 18: 77384.CrossRefGoogle ScholarPubMed
21. Clark, C, Carson, R, Kessler, R, et al. Alternate statistical models for the examination of clinical PET/FDG data. J Cereb Blood Flow Metab 1985; 5: 142150.CrossRefGoogle Scholar
22. Filskov, S, Grimm, B, Lewis, J. Brain/behaviour relationships. In: Boll, T, Filskov, S, eds. Handbook of Clinical Neuropsychology. New York: John Wiley and Son 1981.Google Scholar
23. Curry, J, Heim, L. Brain myelination after neonatal administration of oestradiol. Nature 1966; 209: 915916.CrossRefGoogle ScholarPubMed
24. Heim, L, Timiras, P. Gonad-brain relationship: precocious brain maturation after estradiol in rats. Endocrinology 1963; 72: 598606.CrossRefGoogle ScholarPubMed
25. Toran-Allerand, D. Gonadal hormones and brain development: cellular aspects of sexual differentiation. American Zoologist 1978; 18:553565.CrossRefGoogle Scholar
26. Diamond, M, Dowling, G, Johnson, R. Morphological cerebral cortical asymmetry in male and female rats. Exp Neurol 1981; 71: 261268.CrossRefGoogle Scholar