Hostname: page-component-6bb9c88b65-g7ldn Total loading time: 0 Render date: 2025-07-22T14:09:17.365Z Has data issue: false hasContentIssue false

The Role of Actigraphy in the Assessment of Central Disorders of Hypersomnolence: A Systematic Review and Meta-Analysis

Published online by Cambridge University Press:  26 May 2025

Susana Maia
Affiliation:
Sleep Medicine Center, Hospital CUF Porto, Porto, Portugal Department of Pediatrics, Unidade Local de Saúde de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
Joana Isabel Soares*
Affiliation:
Polytechnic University of Coimbra, Rua da Misericórdia, Lagar dos Cortiços, S. Martinho do Bispo, Coimbra, Portugal H&TRC—Health & Technology Research Center, Coimbra Health School, Polytechnic University of Coimbra, Coimbra, Portugal RISE-Health, Center for Translational Health and Medical Biotechnology Research (TBIO), E2S, Polytechnic University of Porto, R. Dr. António Bernardino de Almeida, Porto, Portugal
Daniel Filipe Borges
Affiliation:
RISE-Health, Center for Translational Health and Medical Biotechnology Research (TBIO), E2S, Polytechnic University of Porto, R. Dr. António Bernardino de Almeida, Porto, Portugal Department of Neurophysiology, E2S, Polytechnic University of Porto, Porto, Portugal Faculty of Medicine, University of Porto, Porto, Portugal
João Casalta-Lopes
Affiliation:
Polytechnic University of Coimbra, Rua da Misericórdia, Lagar dos Cortiços, S. Martinho do Bispo, Coimbra, Portugal Department of Radiotherapy, Unidade Local de Saúde São João, Porto, Portugal Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho - Campus de Gualtar, Braga, Portugal
Marta Gonçalves
Affiliation:
Sleep Medicine Center, Hospital CUF Porto, Porto, Portugal
*
Corresponding author: Joana Isabel Soares; Email: joana.soares@estesc.ipc.pt

Abstract

Background:

Actigraphy provides an objective measure of sleepiness and is recommended by the American Academy of Sleep Medicine for use 7–14 days prior to multiple sleep latency testing. It plays a valuable role in the differential diagnosis of hypersomnolence.

Objective:

Our aim was to provide a comprehensive summary of actigraphy features in central disorders of hypersomnolence (CDH).

Methods:

Data were sourced from six bibliographic databases. Fixed- or random-effects models were applied to compare patients with narcolepsy type 1 (NT1) to controls.

Results:

Of the 1,737 publications identified in our search, 8 studies met the inclusion criteria. The total sample consisted of 473 participants, encompassing patients with NT1, idiopathic hypersomnia (IH), hypersomnolence with normal CSF hypocretin-1 levels, Kleine–Levin syndrome (KLS), traumatic brain injury (TBI), major depressive disorder (MDD), myotonic dystrophy (MD), primary insomnia and healthy controls. Actigraphy devices varied across studies. Compared to control subjects, NT1 patients had lower total sleep time (TST), sleep efficiency and daytime motor activity, with increased wake after sleep onset, awakenings, nocturnal motor activity and longest nap duration. In KLS, TST was higher during hypersomnia episodes than during asymptomatic phases. TBI and MDD patients had a higher TST than the control group, while MD patients had a lower TST than patients with IH.

Conclusions:

Actigraphy is a valuable tool for objectively assessing sleep and can assist in detecting CDH. However, the absence of standardized guidelines limits their broader implementation in clinical practice.

Résumé

RÉSUMÉ

Le rôle de l’actigraphie dans l’évaluation des troubles de l’hypersomnie d’origine centrale : une revue systématique et une méta-analyse.

Contexte :

L’actigraphie fournit une mesure objective de la somnolence et est recommandée par l’American Academy of Sleep Medicine pour une utilisation de 7 à 14 jours avant les tests de latence du sommeil multiple. Elle joue un rôle précieux dans le diagnostic différentiel de l’hypersomnie. Objectif : Notre but était de fournir un résumé complet des caractéristiques de l’actigraphie dans les troubles de l’hypersomnie d’origine centrale.

Méthode :

Nos données provenaient de six bases de données bibliographiques. Des modèles à effets fixes ou aléatoires ont été appliqués pour comparer les patients atteints de narcolepsie de type 1 (NT1) aux témoins.

Résultats :

Sur les 1 737 publications identifiées lors de notre recherche, huit études répondaient à nos critères d’inclusion. L’échantillon total était ainsi composé de 473 participants, ce qui incluait des témoins en santé et des patients atteints de NT1, d’hypersomnie idiopathique (HI), d’hyper-somnolence avec des niveaux normaux d’hypocrétine-1 dans le liquide cérébrospinal (LCS), du syndrome de Kleine-Levin (SKL), de lésions cérébrales traumatiques (LCT), de troubles dépressifs majeurs (TDM), de dystrophie myotonique et d’insomnie primaire. Les appareils d’actigraphie variaient d’une étude à l’autre. Par rapport aux témoins, les patients atteints de NT1 donnaient à voir un temps de sommeil total (TST), une efficacité du sommeil et une activité motrice diurne plus faibles, avec une augmentation des réveils après le début du sommeil, des réveils en cours de sommeil, de l’activité motrice nocturne et de la durée de leurs siestes.Dans le cas du SKL, le TST était plus élevé pendant les épisodes d’hypersomnie que pendant les phases asymptomatiques. Les patients atteints de LCT et de TDM avaient un TST plus élevé que les témoins, tandis que les patients atteints de dystrophie myotoniqueavaient un TST plus faible que les patients atteints d’HI.

Conclusion :

L’actigraphie est un outil précieux pour évaluer objectivement le sommeil et peut aider à détecter l’hypersomnie d’origine centrale. Cependant, l’absence de directives standardisées limite une mise en œuvre plus étendue dans la pratique clinique.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd edn. Darien, IL: American Academy of Sleep Medicine; 2014.Google Scholar
Pérez-Carbonell, L, Mignot, E, Leschziner, G, Dauvilliers, Y. Understanding and approaching excessive daytime sleepiness. Lancet. 2022;400(10357):10331046. doi: 10.1016/S0140-6736(22)01018-2.Google Scholar
Lammers, GJ, Bassetti, CLA, Dolenc-Groselj, L, et al. Diagnosis of central disorders of hypersomnolence: a reappraisal by European experts. Sleep Med Rev. 2020;52:101306. doi: 10.1016/j.smrv.2020.101306.Google Scholar
Gandhi, KD, Mansukhani, MP, Silber, MH, Kolla, BP. Excessive daytime sleepiness: a clinical review. Mayo Clin Proc. 2021;96(5):12881301. doi: 10.1016/j.mayocp.2020.08.033.Google Scholar
Bassetti, C, McNicholas, W, Paunio, T, Peigneux, P. Sleep Medicine Textbook. 2nd edn. European Sleep Research Society; 2021.Google Scholar
Smith, MT, McCrae, CS, Cheung, J, et al. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an American academy of sleep medicine systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med. 2018;14(7):12091230. doi: 10.5664/jcsm.7228.Google Scholar
Martin, JL, Hakim, AD. Wrist actigraphy. Chest. 2011;139(6):15141527. doi: 10.1378/chest.10-1872.Google Scholar
Page, MJ,McKenzie, JE,Bossuyt, PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71.Google Scholar
Ouzzani, M, Hammady, H, Fedorowicz, Z, Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210. doi: 10.1186/s13643-016-0384-4.Google Scholar
Wells, G, Shea, B, O’Connell, D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed April 26, 2023. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.Google Scholar
The jamovi project. jamovi (version 1.6) [Computer Software]. 2021. Retrieved from. Available at: https://www.jamovi.org.Google Scholar
R Core Team. R: a language and environment for statistical computing. (Version 4.0). 2020. Retrieved from. https://cran.r-project.org.Google Scholar
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):148. doi: 10.18637/jss.v036.i03.Google Scholar
Filardi, M, Pizza, F, Martoni, M, Vandi, S, Plazzi, G, Natale, V. Actigraphic assessment of sleep/wake behavior in central disorders of hypersomnolence. Sleep Med. 2015;16(1):126130. doi: 10.1016/j.sleep.2014.08.017.Google Scholar
Imbach, LL, Valko, PO, Li, T, et al. Increased sleep need and daytime sleepiness 6 months after traumatic brain injury: a prospective controlled clinical trial. Brain. 2015;138(Pt 3):726735. doi: 10.1093/brain/awu391.Google Scholar
Cook, JD, Goldstein, MR, Plante, DT. Subjective and objective measures of sleep duration and quality in major depressive disorder with comorbid hypersomnolence. Sleep. 2015;38:A329A30.Google Scholar
Tonetti, L, Filardi, M, Plazzi, G, Natale, V. Advantages of single step over step-by-step screening for sleep disorders. Biol Rhythm Res. 2017;49(4):610621. doi: 10.1080/09291016.2017.1390822.Google Scholar
Leger, D, Gauriau, C, Tonetti, L, et al. Using actigraphy to assess sleep and wake rhythms of narcolepsy type 1 patients: a comparison with primary insomniacs and healthy controls. Sleep Med. 2018;52:8891. doi: 10.1016/j.sleep.2018.07.024.Google Scholar
Chen, ZY, Trotti, LM, Rye, DB. Myotonic dystrophy phenocopies sleep features of idiopathic hypersomnia. Ann Neurol. 2020;88(25):S229S230.Google Scholar
Lin, C, Chin, WC, Huang, YS, et al. Different circadian rest-active rhythms in Kleine-Levin syndrome: a prospective and case-control study. Sleep. 2021;44(9):zsab096. doi: 10.1093/sleep/zsab096.Google Scholar
Torstensen, EW, Pickering, L, Kornum, BR, Wanscher, B, Baandrup, L, Jennum, PJ. Diagnostic value of actigraphy in hypersomnolence disorders. Sleep Med. 2021;85:17. doi: 10.1016/j.sleep.2021.06.033.Google Scholar
Harneet, K, Walia, RM. Practical aspects of actigraphy and approaches in clinical and research domains. In: KHLaP, Chauvel, ed. Handbook of Clinical Neurology. Elsevier; 2019: 371379.Google Scholar
Cook, JD, Plante, DT. Wearable technology as a tool for sleep-wake estimation in central disorders of hypersomnolence. Curr Sleep Med Reports. 2019;5(4):193200. doi: 10.1007/s40675-019-00156-9.Google Scholar
Alakuijala, A, Sarkanen, T, Jokela, T, Partinen, M. Accuracy of actigraphy compared to concomitant ambulatory polysomnography in narcolepsy and other sleep disorders. Front Neurol. 2021;12:629709. doi: 10.3389/fneur.2021.629709.Google Scholar
Liguori, C, Mombelli, S, Fernandes, M, et al. The evolving role of quantitative actigraphy in clinical sleep medicine. Sleep Med Rev. 2023;68:101762. doi: 10.1016/j.smrv.2023.101762.Google Scholar
Kretzschmar, U, Werth, E, Sturzenegger, C, Khatami, R, Bassetti, CL, Baumann, CR. Which diagnostic findings in disorders with excessive daytime sleepiness are really helpful? A retrospective study. J Sleep Res. 2016;25(3):307313. doi: 10.1111/jsr.12383.Google Scholar
Leger, D, Tonetti, L, Gauriau, C, et al. A study on the optimal length of actigraphic recording in narcolepsy type 1. Clin Neurophysiol Pract. 2019;4:114118. doi: 10.1016/j.cnp.2019.04.004.Google Scholar
Cook, JD, Eftekari, SC, Leavitt, LA, Prairie, ML, Plante, DT. Optimizing actigraphic estimation of sleep duration in suspected idiopathic hypersomnia. J Clin Sleep Med. 2019;15(4):597602. doi: 10.5664/jcsm.7722.Google Scholar
Ancoli-Israel, S, Martin, JL, Blackwell, T, et al. The SBSM guide to actigraphy monitoring: clinical and research applications. Behav Sleep Med. 2015;13(Suppl 1):S4S38. doi: 10.1080/15402002.2015.1046356.Google Scholar
Supplementary material: File

Maia et al. supplementary material

Maia et al. supplementary material
Download Maia et al. supplementary material(File)
File 80.9 KB