Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T14:28:42.864Z Has data issue: false hasContentIssue false

Roles of Cerebellum and Basal Ganglia in Initiation and Control of Movements

Published online by Cambridge University Press:  18 September 2015

V.B. Brooks*
Affiliation:
Department of Physiology, University of Western Ontario, London, Ontario, Canada N6A 5C1
*
Department of Physiology, University of Western Ontario, London, Ontario, Canada N6A 5C1
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Theories of function of the cerebellum and basal ganglia are examined in the light of recent experimental findings obtained with the local cooling method, and both are matched against clinical observations. Evidence is summarized for a programming and initiating role in monkeys’ elbow movements of the lateral, and to a lesser degree, intermediate, cerebellum. Cooling either nuclei affected movements, but neither seemed to be important for precentral cortical unit discharge accompanying compensation for suddenly applied load pulses. The globus pallidus seemed to be importantly involved in movement guidance in the absence of vision.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1975

References

REFERENCES

Allen, G.I. and Tsukahara, N. (1974). Cerebro-cerebellar communication systems. Physiol. Rev., 54, 9571006.CrossRefGoogle Scholar
Andersen, P., Gjerstand, L., and Pasztor, E. (1972). Effect of cooling on synaptic transmission through the cuneate nucleus. Actaphysiol. scand., 84, 433447.CrossRefGoogle ScholarPubMed
Bénita, M. and Condé, H. (1972). Effects of local cooling upon conduction and synaptic transmission. Brain Res., 36, 133151.CrossRefGoogle ScholarPubMed
Bowsher, D. (1965). The anatomophysiological basis of somatosensory discrimination, Int. Rev. Neurobiol., 8, 3575.CrossRefGoogle ScholarPubMed
Brobeck, J.R. (1974). The Second Stevenson Lecture. Regulations and Integrations. Can. J. Physiol. Pharmacol., 52, 769779.CrossRefGoogle Scholar
Brodal, A. (1969). Neurological Anatomy in Relation to Clinical Medicine. Oxford University Press, New York.Google Scholar
Brooks, V.B. and Stoney, S.D. (1971). Motor mechanisms: the role of the pyramidal system in motor control. Ann. Rev. Physiol., 33, 337392.CrossRefGoogle ScholarPubMed
Brooks, V.B., Kozlovskaya, I.B., Atkin, A., Horvath, F.E. and Uno, M. (1973). Effects of cooling dentate nucleus on tracking-task performance in monkeys. J. Neurophysiol., 36, 974995.CrossRefGoogle ScholarPubMed
Brooks, V.B. (1974). Some examples of preprogrammed and feedback-guided movements. Brain Res., 71, 299308.CrossRefGoogle Scholar
Brooks, V.B., Cooke, J.D., and Thomas, J.S. (1974). The continuity of movements. In: Control of Posture and Locomotion. Stein, R.B., Pearson, K.G., Smith, R.S. and Redford, J.B., eds. New York: Plenum Press, pp. 257272.Google Scholar
Butz, P., Kaufmann, W., and Wiesendanger, M. (1970). Analyse einer raschen Willkurbewegung bei Parkinsonpatienten vor und nach stereotaktischem Eingriff am Thalamus. Z. Neurol., 198, 105119.Google Scholar
Camis, M. (1923). Recherches sur le mecanisme central des mouvements de deambulation. Arch int. de physiol., 20, 340370.Google Scholar
Carpenter, M.B. (1973). Comparisons of the efferent projections of the globus pallidus and substantia nigra in the monkey. In: Efferent Organization and the Integration of Behavior. Maser, J.D., ed. New York: Academic Press, pp. 137174.Google Scholar
Conrad, B., and Brooks, V.B. (1974). Effects of dentate cooling on rapid alternating arm movements. J. Neurophysiol., 37, 792804. CrossRefGoogle ScholarPubMed
Conrad, B., Matsunami, K., Meyer-Lohmann, J., Wiesendanger, M., and Brooks, V.B. (1974). Cortical load compensation during voluntary elbow movements. Brain Res., 71, 507514.CrossRefGoogle ScholarPubMed
Conrad, B., Meyer-Lohmann, J., Matsunami, K., and Brooks, V.B. (1975). Precentral unit activity following torque pulse injections into elbow movements. Brain Res. 86. In press.Google Scholar
Cooper, I.S. (1969). Involuntary Movement Disorders. Harper and Row, New York.Google Scholar
Dahlstrom, A., and Fuxe, K. (1964). Evidence for the existence of monoaminecontaining neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of the brain stem neurons. Acta physiol. scand., Supplement 232, 62, 15.Google Scholar
Delong, M.R., and Strick, P.L. (1974). Relation of basal ganglia, cerebellum, and motor cortex units to ramp and ballistic limb movements. Brain Res., 71, 327335.CrossRefGoogle ScholarPubMed
Denny-Brown, D. (1962). The Basal Ganglia. Oxford University Press, London.Google Scholar
Dow, R.S. and Moruzzi, G. (1958). The Physiology and Pathology of the Cerebellum. University of Minnesota Press, Minneapolis.Google Scholar
Eccles, J.C. (1969). The dynamic loop hypothesis of movement control. In: Information Processing in the Nervous System. Leibovic, K.N., ed. Heidelberg: Springer Verlag, pp. 245269.Google Scholar
Eccles, J.C. (1972). The First Stevenson Lecture. The role of the brain in movement and skill. (Unpublished.)Google Scholar
Eccles, J.C. (1973). Review lecture: The cerebellum as a computer; patterns in space and time. J. Physiol., 229, 132.CrossRefGoogle Scholar
Evarts, E.V. and Thach, W.T. (1969). Motor mechanism of the CNS: cerebrocerebellar interrelations. Ann. Rev. Physiol., 31, 451498.CrossRefGoogle ScholarPubMed
Evarts, E.V. (1975). The Third Stevenson Lecture. Changing concepts of central control of movement. Can. J. Physiol. Pharmacol., 53, 191201.CrossRefGoogle ScholarPubMed
Garver, D.L., and Sladek, J.R. (1975). Monoamine distribution in primate brain. J. comp. Neurol., 159, 289304.CrossRefGoogle ScholarPubMed
Gilman, S. (1972). The nature of cerebellar dyssynergia. In: Modern Trends in Neurology. Williams, D., ed. London: Butterworths, 5, pp. 6079.Google Scholar
Gilman, S., and Ebel, H.C. (1970). Fusimotor neuron responses to natural stimuli as a function of prestimulus fusimotor activity in decerebellate cats. Brain Res., 21, 367384.CrossRefGoogle ScholarPubMed
Granit, R. (1970). The Basis of Motor Control. Academic Press, New York.Google Scholar
Granit, R., Holmgren, B., and Merton, P.A. (1955). The two routes for excitation of muscle and their subservience to the cerebellum. J. Physiol., 130, 213224.CrossRefGoogle ScholarPubMed
Holmes, G. (1917). The symptoms of acute cerebellar injuries due to gunshot injuries. Brain, 40, 461535.CrossRefGoogle Scholar
Hore, J., Meyer-Lohmann, J., and Brooks, V.B. (1975). Cerebellar influence on simple reaction time in primates. Abstr. 5th Ann. Meeting, Soc. Neuroscience.Google Scholar
Hore, J., Meyer-Lohmann, J., and Brooks, V.B. (1975). Effects of cooling globus pallidus on monkey arm movements. Canada Physiology, 6, 30.Google Scholar
Horvath, F., Atkin, A., Kozlovskaya, I., Fuller, D.R.G., and Brooks, V.B. (1970). Effects of cooling the dentate nucleus on alternating barpressing performance in monkey. Int. J. Neurol., 7, 252270.Google ScholarPubMed
Houk, J.C. (1972). On the significance of various command signals during voluntary movement. Brain Res., 40, 4958.CrossRefGoogle Scholar
Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system. Int. J. Neurol., 7, 162176.Google ScholarPubMed
Jasper, H.H., Shacter, D.G., and Monplaisir, (1970). The effect of local cooling upon spontaneous and evoked electrical activity of cerebral cortex. Can. J. Physiol. Pharmacol., 48, 640652.CrossRefGoogle ScholarPubMed
Kemp, J.M. and Powell, J.P.S. (1971). The connexions of the striatum and globus pallidus: synthesis and speculation. Phil. Trans. Roy. Soc. Lond. B., 262, 441457.Google ScholarPubMed
Kornhuber, H.H., (1974). Cerebral cortex, cerebellum, and basal ganglia: an introduction to their motor functions. In: The Neurosciences, Third Study Program. Schmitt, F.O. and Worden, F.G., eds. Cambridge, Mass.: MIT Press, pp. 267280.Google Scholar
Kozlovskaya, I.B., Atkin, A., Horvath, F.E., Thomas, J.S., and Brooks, V.B. (1974). Preprogrammed and feedback-guided movements of monkeys. Behav. Biol., 12, 243248.CrossRefGoogle ScholarPubMed
Lawrence, D.G., and Kuypers, H.G.J.M. (1968). The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain, 91, Part I, 114.CrossRefGoogle ScholarPubMed
Lawrence, D.G., and Kuypers, H.G.J.M. (1968). The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brainstem pathways. Brain, 91, Part I, 1536.CrossRefGoogle Scholar
Liu, C.N. and Chambers, W.W., (1971). A study of cerebellar dyskinesia in the bilaterally deafferented forelimbs of the monkey. Acta Neurol. Exptl., 31, 263289.Google ScholarPubMed
Martin, J.P. (1967). The Basal Ganglia and Posture. Pitman Medical, London.Google Scholar
Meyer-Lohmann, J., Conrad, B., Matsunami, K. and Brooks, V.B. (1975). Effects of dentate cooling on percentral unit activity following torque pulse injections into elbow movements. Brain Res. 86. In Press.Google Scholar
Miller, A., Meyer-Lohmann, J., Hore, J., and Brooks, V.B. (1975). Relation between cerebellar nuclei and simple reaction time. Proc. Can. Fed. Biol. Soc, 18, 148.Google Scholar
Murphy, J.T., Wong, Y.C., and Kwan, H.C. (1974). Distributed feedback systems for muscle control. Brain Res., 71, 495506.CrossRefGoogle ScholarPubMed
Murphy, J.T., Wong, Y.C., and Kwan, H.C. (1975). Afferent-efferent linkages in motor cortex for single forelimb muscles. J. Neurophysiol., In Press.CrossRefGoogle ScholarPubMed
Nichols, T.R., and Houk, J.C. (1973). Reflex compensation for variations in the mechanical properties of a muscle. Science, 181, 182184.CrossRefGoogle ScholarPubMed
Oscarsson, O. (1973). Functional organization of spinocerebellar paths. In: Handbook of Sensory Physiology, Vol. 2, Somatosensory System. Iggo, A., ed. Heidelberg: Springer-Verlag, pp. 339380.Google Scholar
Pandya, D.N., and Kuypers, H.G.J.M. (1969). Cortico-cortical connections in the rhesus monkey. Brain Res., 13, 1336.CrossRefGoogle ScholarPubMed
Phillips, C.G. (1969). Motor apparatus of the baboon’s hand. The Ferrier Lecture, 1968. Proc. Roy. Soc. B., 173, 141174.Google ScholarPubMed
Poirier, L.J., and Sourkes, T.L. (1965). Influence of the substantia nigra on the catecholamine content of the striatum. Brain, 88, 181192.CrossRefGoogle ScholarPubMed
Powell, T.P.S., and Cowan, W.M. (1956). A study of the thalamo-striate relations in the monkey. Brain, 79, 364390.CrossRefGoogle Scholar
Purpura, D.P. (1972). Intracellular studies of synaptic organizations in the mammalian brain. In: Structure and Function of Synapses. Pappas, G.D. and Purpura, D.P., eds. New York: Raven Press, pp. 257302.Google Scholar
Schmidt, E.M., Jost, R.G., and Davis, K.K. (1975). Re-examination of the force relationship of cortical cell discharge patterns with conditioned wrist movements. Brain Res., 83, 213223.CrossRefGoogle Scholar
Stein, R.B. (1974). Peripheral control of movement. Physiol. Rev., 54, 215243.CrossRefGoogle ScholarPubMed
Thach, W.T. (1975). Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res., 88, 233241.CrossRefGoogle ScholarPubMed
Trendelenburg, W. (1910). Untersuchungen über reizlose vorübergehende Ausschaltung am Zentralnervensystem. I. Vorläufiger Bericht. Pflügers Arch. ges. Physiol., 133, 305312.CrossRefGoogle Scholar
Trendelenburg, W. (1910). Untersuchungen über reizlose vorübergehende Ausschaltung am Zentralnervensystem. II. Zur Lehre von den bulbären und spinalen Atmungs und Gefasszentren. Pflügers Arch. ges. Physiol., 135, 469505.CrossRefGoogle Scholar
Trendelenburg, W. (1910). Der Einfluss der hoheren Hirnteile auf die Reflextätigkeit des ruckenmarks. Pflügers Arch, ges. Physiol., 136, 429442.CrossRefGoogle Scholar
Trendelenburg, W. (1911). Untersuchungen über reizlose vorübergehende Ausschaltung am Zentralnervensystem. III. Die Extremitätenregion der Grosshirnrinde. Pflügers Arch. ges. Physiol., 137, 515544.CrossRefGoogle Scholar
Ungerstedt, U. (1971). Stereotaxic mapping of the monoamine pathways in the rat brain. Actaphysiol. scand., Supplement 367, 148.CrossRefGoogle ScholarPubMed
Uno, M., Kozlovskaya, I.B., and Brooks, V.B. (1973). Effects of cooling interposed nuclei on tracking task performance in monkeys. J. Neurophysiol., 36, 9961003.CrossRefGoogle ScholarPubMed
Vilis, T., and Cooke, J.D. (1975). Modulation of the functional stretch reflex by segmental reflex pathway. Proc. Can. Fed. Biol. Soc, 18, 148.Google Scholar
Vilis, T., Meyer-Lohmann, J., Hore, J. and Brooks, V.B. (1975). Effects of cooling the interposed nuclei on perturbed movements and related precentral unit activity. (In preparation.)Google Scholar