Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T23:03:38.921Z Has data issue: false hasContentIssue false

Treatment of Early Parkinson's Disease

Published online by Cambridge University Press:  02 December 2014

David A. Grimes
Affiliation:
Division of Neurology, Department of Medicine, University of Toronto, and the Morton & Gloria Shulman Movement Disorders Center, The Toronto Hospital
Anthony E. Lang
Affiliation:
Division of Neurology, Department of Medicine, University of Toronto, and the Morton & Gloria Shulman Movement Disorders Center, The Toronto Hospital
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The early treatment of Parkinson's disease continues to be controversial as our understanding of the etiology of the disease remains incomplete. Ideally an intervention that reverses or protects against further damage to dopaminergic neurons would be initiated once the symptoms of the disease are recognized. Unfortunately, there are no currently available therapies that have been shown to have a major impact on the progression of the disease. However, delaying effective symptomatic therapy beyond a point of significant disability does result in increased mortality. Concerns have been raised regarding the potential toxicity of levodopa on remaining nigral neurons. Although there is little support for this concept, levodopa is associated with important complications. The development of new symptomatic treatments has made the management of early Parkinson's disease even more complex and requires that many different factors be considered prior to initiating therapy in an attempt to minimize current and future disability caused by the disease and its treatment.

Résumé

RÉSUMÉ

Le traitement de la maladie de Parkinson (MP) au début demeure controversé à cause de notre compréhension limitée de l'étiologie de la maladie. Idéalement, une intervention qui répare les dommages subis par les neurones dopaminergiques ou qui protège contre la progression de ces dommages devrait être débutée dès que les symptômes de la maladie sont détectés. Malheureusement, il n'existe pas présentement de traitement disponible dont on ait prouvé l'efficacité sur la progression de la maladie. Cependant, le fait de retarder le traitement efficace des symptômes au-delà du moment où le patient éprouve un degré significatif d'invalidité résulte en une mortalité augmentée. La toxicité potentielle de la lévodopa sur les neu-rones nigraux restants demeure un sujet de préoccupation. Bien qu'il existe peu d'évidence en faveur de ce concept, la lévodopa est associée à des complications importantes. Le développement de nouveaux traitements symptomatiques a rendu le traitement de la MP au début encore plus complexe. On doit considérer plusieurs facteurs différents avant de commencer le traitement afin de minimiser l'invalidité présente et future causée par la maladie et son traitement.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

1. Miyawaki, E, Lyons, K, Pahwa, R, et al. Motor complications of chronic levodopa therapy in Parkinson’s disease. Clin Neuropharmacol 1997; 20: 523530.CrossRefGoogle ScholarPubMed
2. Fahn, S. Is levodopa toxic? Neurology 1996; 47: S184-S195CrossRefGoogle Scholar
3. Snyder, SH, D’Amato, RJD. MPTP: A neurotoxin relevant to the pathophysiology of Parkinson’s disease. The 1985 George C. Cotzias Lecture. Neurology 1986; 36: 250258.CrossRefGoogle Scholar
4. Mytilineou, C, Radcliffe, PM, Olanow, CW. L-(-)-desmethylselegiline, a metabolite of selegiline [L-(-)- deprenyl], protects mesencephalic dopamine neurons from excitotoxicity in vitro. J Neurochem 1997; 68: 434436.CrossRefGoogle ScholarPubMed
5. The Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1993; 328: 176183.CrossRefGoogle Scholar
6. Olanow, CW, Hauser, RA, Gauger, L, et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol 1995; 38: 771777.CrossRefGoogle ScholarPubMed
7. Olanow, CW. Deprenyl in the treatment of Parkinson’s disease: clinical effects and speculations on mechanism of action. J Neural Transm 1996; 103: 7584.Google Scholar
8. Parkinson Study Group. Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP subjects not requiring levodopa. Ann Neurol 1996; 39: 2936.CrossRefGoogle Scholar
9. Parkinson Study Group. Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP patients requiring levodopa. Ann Neurol 1996; 39: 3745.CrossRefGoogle Scholar
10. Lees, AJ. Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson’s disease. Br Med J 1995; 311: 16021607.CrossRefGoogle ScholarPubMed
11. Olanow, CW, Fahn, S, Langston, JW, Godbold, J. Selegiline and mortality in Parkinson’s disease. Ann Neurol 1996; 40: 841845.CrossRefGoogle ScholarPubMed
12. Riggs, JE. Deprenyl, excess mortality, and epidemiological traps. Clin Neuropharmacol 1997; 20: 276278.CrossRefGoogle ScholarPubMed
13. Shoulson, I, Oakes, D, Fahn, S, et al. Mortality in DATATOP: a multicenter trial in early Parkinson’s disease. Ann Neurol 1998; 43: 318325.CrossRefGoogle Scholar
14. Schwab, RS, Poskanzer, DC, England, AC, Young, RR. Amantadine in Parkinson’s disease. JAMA 1972; 222: 792795.CrossRefGoogle ScholarPubMed
15. Lang, AE, Blair, RDG. Anticholinergic drugs and amantadine in the treatment of Parkinson’s disease. In: Calne, DB, editor. Handbook of Experimental Pharmacology. Drugs for the Treatment of Parkinson’s disease. 1st ed. Berlin: Springer-Verlag, 1989: 307323.CrossRefGoogle Scholar
16. Stoof, JC, Booij, J, Drukarch, B. Amantidine as N-methyl-D-aspartic acid receptor antagonist: new possibilities for therapeutic applications? Clin Neurol Neurosurg 1992; 94: S4-S6CrossRefGoogle ScholarPubMed
17. Greenamyre, JT, O’Brien, CF. N-methyl-D-aspartate antagonists in the treatment of Parkinson’s disease. Arch Neurol 1991; 48: 977981.CrossRefGoogle ScholarPubMed
18. Uitti, RJ, Rajput, AH, Ahlskog, JE, et al. Amantadine treatment is an independent predictor of improved survival in Parkinson’s disease. Neurology 1996; 46: 15511556.CrossRefGoogle ScholarPubMed
19. Rajput, AH, Uitti, RJ, Lang, AE, Kumar, R, Galvez-Jimenez, N. Amantadine ameliorates levodopa induced dyskinesias. Neurology 1997; 48: A328Google Scholar
20. Verhagen Metman, VL, Del Dotto, P, Van den Munckhof, P, et al. Amantadine as treatment for dyskinesias and motor fluctuations in PD. Neurology 1998; 50: 13231326.CrossRefGoogle Scholar
21. Olanow, CW. Attempts to obtain neuroprotection in Parkinson’s disease. Neurology 1997; 49: S26-S33CrossRefGoogle ScholarPubMed
22. Fahn, S, Cohen, G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 1992; 32: 804812.CrossRefGoogle Scholar
23. Pardo, B, Mena, MA, Casarejos, MJ, Paino, CL, De Yébenes, JG. Toxic effects of L-DOPA on mesencephalic cell cultures: protection with antioxidants. Brain Res 1995; 682: 133143.CrossRefGoogle ScholarPubMed
24. Fahn, S. Levodopa-induced neurotoxicity. Does it represent a problem for the treatment of Parkinson’s disease? CNS Drugs 1997; 8: 376393.CrossRefGoogle Scholar
25. Ziv, I, Zilkha-Falb, R, Offen, D, et al. Levodopa induces apoptosis in cultured neuronal cells – a possible accelerator of nigrostriatal degeneration in Parkinson’s disease? Mov Disord 1997; 12: 1723.CrossRefGoogle Scholar
26. Han, SK, Mytilineou, C, Cohen, G. L-dopa up-regulates glutatheone and protects mesencephalic cultures against oxidative stress. J Neurochem 1996; 66: 501510.CrossRefGoogle ScholarPubMed
27. Perry, TL, Yong, VW, Ito, M, et al. Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-Dopa and carbidopa chronically. J Neurochem 1984; 43: 990993.CrossRefGoogle ScholarPubMed
28. Hefti, F, Melamed, E, Bhawan, J, Wurtman, RJ. Long-term administration of levodopa does not damage dopaminergic neurons in the mouse. Neurology 1981; 31: 11941195.CrossRefGoogle Scholar
29. Cotzias, GC, Miller, ST, Nicholson, AR, Maston, WH, Tang, LC. Prolongation of the life-span in mice adapted to large amounts of L-dopa. Proc Nat Acad 1974; 71: 24662469.CrossRefGoogle ScholarPubMed
30. Steece-Collier, K, Collier, TJ, Sladek, CD, Sladek, JR. Chronic levodopa impairs morphological development of grafted embryonic dopamine neurons. Exp Neurol 1990; 110: 201208.CrossRefGoogle ScholarPubMed
31. Steece-Collier, K, Turek, DM, Collier, TJ, Junn, FS, Sladek, JR. The detrimental effect of levodopa on behavioural efficacy of fetal dopamine neuron grafts in rats is reversible following prolonged withdrawal of chronic dosing. Brain Res 1995; 676: 404408.CrossRefGoogle ScholarPubMed
32. Blunt, SB, Jenner, P, Marsden, CD. Suppressive effect of L-dopa on dopamine cells remaining in the ventral tegmental area of rats previously exposed to the neurotoxin 6-hydroxydopamine. Mov Disord 1993; 8: 129133.CrossRefGoogle Scholar
33. Murer, MG, Dziewczapolski, G, Menalled, LB, et al. Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Ann Neurol 1998; 43: 114.CrossRefGoogle Scholar
34. Rajput, AH, Fenton, ME, Birdi, S, Macaulay, R. Is levodopa toxic to human substantia nigra? Mov Disord 1997; 12: 634638.CrossRefGoogle ScholarPubMed
35. Rajput, AH, Uitti, RJ, Offord, KP. Timely levodopa (LD) administration prolongs survival in Parkinson’s disease. Parkinsonism & Rel Disord 1997; 3: 159165.CrossRefGoogle ScholarPubMed
36. Clarke, CE. Does levodopa therapy delay death in Parkinson’s disease? A review of the evidence. Mov Disord 1995; 10: 250256.Google ScholarPubMed
37. Agid, Y. Levodopa – is toxicity a myth? Neurology 1998; 50: 858863.CrossRefGoogle ScholarPubMed
38. Agid, Y, Chase, T, Marsden, D. Adverse reactions to levodopa: drug toxicity or progression of disease? Lancet 1998; 351: 851852.CrossRefGoogle ScholarPubMed
39. Riley, D. Is levodopa toxic to human substantia nigra? Mov Disord 1998; 13: 369370.CrossRefGoogle ScholarPubMed
40. Sage, JI, Sonsalla, PK, McHale, DM, Heikkila, RE, Duvoisin, R. Clinical experience with duodenal infusions of levodopa for the treatment of motor fluctuations in Parkinson’s disease. Adv Neurol 1990; 53: 383386.Google ScholarPubMed
41. Kostic, V, Przedborski, S, Flaster, E, Sternic, N. Early development of levodopa-induced dyskinesias and response fluctuations in young-onset Parkinson’s disease. Neurology 1991; 41: 202205.CrossRefGoogle ScholarPubMed
42. Marin, C, Papa, S, Engber, TM, et al. MK-801 prevents levodopa-induced motor response alterations in parkinsonian rats. Brain Res 1996; 736: 202205.CrossRefGoogle ScholarPubMed
43. Papa, SM, Chase, TN. Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann Neurol 1996; 39: 574578.CrossRefGoogle ScholarPubMed
44. Colosimo, C, Merello, M, Hughes, AJ, Sieradzan, K, Lees, AJ. Motor response to acute dopaminergic challenge with apomorphine and levodopa in Parkinson’s disease: implications for the pathogenesis of the on-off phenomenon. J Neurol Neurosurg Psychiatry 1996; 60: 634637.CrossRefGoogle ScholarPubMed
45. Metman, LV, Locatelli, ER, Bravi, D, Mouradian, MM, Chase, TN. Apomorphine responses in Parkinson’s disease and the pathogenesis of motor complications. Neurology 1997; 48: 369372.CrossRefGoogle Scholar
46. Chase, TN. The significance of continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Drugs 1998; 55: 19.CrossRefGoogle ScholarPubMed
47. Block, G, Liss, C, Reines, S, et al. Comparison of immediate-release and controlled release carbidopa/levodopa in Parkinson’s disease – a multicenter 5-year study. Eur Neurol 1997; 37: 2327.CrossRefGoogle Scholar
48. Przuntek, H, Welzel, D, Gerlach, M, et al. Early institution of bromocriptine in Parkinson’s disease inhibits the emergence of levodopa-associated motor side effects. Long-term results of the PRADO study. J Neural Transm 1996; 103: 699715.CrossRefGoogle ScholarPubMed
49. Giménez-Roldán, S, Tolosa, E, Burguera, JA, et al. Early combination of bromocriptine and levodopa in Parkinson’s disease: a prospective randomized study of two parallel groups over a total follow-up period of 44 months including an initial 8-month double-blind stage. Clin Neuropharmacol 1997; 20: 6776.CrossRefGoogle Scholar
50. Hely, MA, Morris, JGL, Reid, WGJ, et al. The Sydney Multicentre Study of Parkinson’s disease: a randomized, prospective five year study comparing low dose bromocriptine with low dose levodopa-carbidopa. J Neurol Neurosurg Psychiatry 1994; 57: 903910.CrossRefGoogle ScholarPubMed
51. Lees, AJ, Shaw, KM, Stern, GM. Bromocriptine in Parkinsonism. Lancet 1975; 709710.Google Scholar
52. Parkinson’s Disease Research Group in the United Kingdom. Comparisons of therapeutic effects of levodopa, levodopa and selegiline, and bromocriptine in patients with early, mild Parkinson’s disease: three year interim report. Br Med J 1993; 307: 469472.CrossRefGoogle Scholar
53. Montastruc, JL, Rascol, O., Senard, JM, Rascol, A. A randomized controlled study comparing bromocriptine to which levodopa was later added, with levodopa alone in previously untreated patients with Parkinson’s disease: a five year follow-up. J Neurol Neurosurg Psychiatry 1994; 57: 10341038.CrossRefGoogle ScholarPubMed
54. Watts, RL. The role of dopamine agonists in early Parkinson’s disease. Neurology 1997; 49: S34-S48CrossRefGoogle ScholarPubMed
55. Rinne, UK. Combined bromocriptine-levodopa therapy early in Parkinson’s disease. Neurology 1985; 35: 11961198.CrossRefGoogle ScholarPubMed
56. Ogawa, N, Kanazawa, I, Kowa, H, et al. Nationwide multicenter prospective study on the long-term effects of bromocriptine for Parkinson’s disease – final report of a ten-year follow-up. Eur Neurol 1997; 38: 3749.CrossRefGoogle ScholarPubMed
57. Bergamasco, B, Benna, P, Scarzella, L. Long-term bromocriptine treatment of de novo patients with Parkinson’s disease. A seven-year follow-up. Acta Neurol Scand 1990; 81: 383387.CrossRefGoogle ScholarPubMed
58. Grimes, JD, Delgado, MR. Bromocriptine: problems with low-dose de novo therapy in Parkinson’s disease. Clin Neuropharmacol 1985; 8: 7377.CrossRefGoogle ScholarPubMed
59. Wolters, EC, Tissingh, G, Bergmans, PLM, Kuiper, MA. Dopamine agonists in Parkinson’s disease. Neurology 1995; 45 Suppl. 3: 2834.CrossRefGoogle ScholarPubMed
60. Rinne, UK. Dopamine agonists as primary treatment in Parkinson’s disease. Adv Neurol 1986; 45: 519523.Google Scholar
61. Poewe, WH, Rascol, O, Brooks, DJ, et al. Ropinirole in the treatment of early Parkinson’s disease: a 6-month interim report of a 5-year levodopa-controlled study. Mov Disord 1998; 13: 3945.Google Scholar
62. Shannon, KM, Bennett, JP Jr., Friedman, JH. Efficacy of pramipexole, a novel dopamine agonist, as monotherapy in mild to moderate Parkinson’s disease. Neurology 1997; 49: 724728.CrossRefGoogle ScholarPubMed
63. Rinne, UK, Bracco, F, Chouza, C, et al. Cabergoline in the treatment of early Parkinson’s disease: results of the first year of treatment in a double-blind comparison of cabergoline and levodopa. Neurology 1997; 48: 363368.CrossRefGoogle Scholar
64. Carrion, A, Weiner, WJ, Shulman, LM. A three and a half year experience with pramipexole (PMPX) monotherapy in patients with early Parkinson’s disease (PD). Neurology 1998; 50: A330.Google Scholar
65. Larsen, JP, Brunt, E, Korczyn, AD, et al. Ropinirole is effective in long-term treatment of patients with early Parkinson’s disease. Neurology 1998; 50: A277.Google Scholar