Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T23:32:59.176Z Has data issue: false hasContentIssue false

Triphasic Waves During Post-Ictal Stupor

Published online by Cambridge University Press:  18 September 2015

Abayomi Ogunyemi*
Affiliation:
Division of Neurology, Health Sciences Centre and Faculty of Medicine, Memorial University. St. John’s
*
Division of Neurology, Health Sciences Centre, 300 Prince Philip Drive, St. John’s, Newfoundland, Canada A1B 3V6
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Background: The term, “triphasic wave” originally described an EEG pattern believed to be a marker for a specific stage of hepatic coma. For 4 decades, the diagnostic and prognostic specificity of the pattern remains controversial. Its pathophysiology also continues to be elusive. Methods: EEG recordings were obtained in three patients known or suspected to have primary generalized epilepsy. In 2 patients, the EEGs were part of long-term monitoring using simultaneous video-EEG telemetry. For the third patient, the EEG was secured only during the post-ictal unconsciousness. These 3 patients were specifically selected because of the presence of triphasic waves in their EEGs. Results: Triphasic waves were observed in the EEG of the 3 patients only during post-ictal unconsciousness. The pattern was transient, being preceded by generalized suppression and delta slow waves and followed by theta activities. Alpha rhythms supervened when the patients became fully alert. Conclusion: A post-ictal state should be considered in unconscious patients with triphasic EEG waves.

Résumé

Résumé

Ondes triphasiques pendant la stupeur postcritique. Introduction: On parlait initialement d’onde triphasique pour décrire un motif EEG qu’on croyait être un marqueur d’un stade spécifique du coma hépatique. Pendant 4 décennies, la spécificité diagnostique et pronostique de ce motif sont demeurées un sujet de controverse. Sa pathophysiologie demeure également obscure. Méthodes: Nous avons obtenu des enregistrements EEG chez trois patients avec un diagnostic certain ou soupçonné d’épilepsie généralisée primaire. Chez 2 patients, l’EEG faisait partie du suivi à long terme associé à la télémesure vidéo-EEG. Chez le troisième patient, l’EEG a été enregistré seulement pendant la période d’inconscience postcritique. Ces 3 patients avaient été choisis à cause de la présence d’ondes triphasiques à l’EEG. Résultats: Les ondes triphasiques ont été observées sur l’EEG des 3 patients seulement pendant la période d’inconscience postcritique. Le motif était transitoire, précédé d’une suppression généralisée et d’ondes delta lentes, et suivi d’activité thêta. Les rythmes alpha sont réapparus quand les patients ont été tout à fait réveillés. Conclusion: On doit considérer qu’il peut s’agir d’un état postcritique chez les patients qui sont inconscients et qui ont des ondes EEG triphasiques.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1996

References

1. Bickford, RG., Butt, HR. Hepatic coma: the electroencephalographic pattern. J Clin Invest 1955; 3: 790799.Google Scholar
2. Foley, JM., Watson, CW., Adams, RD. Significance of the electroencephalographic changes in hepatic coma. Trans Am Neurol Assoc 1950; 75: 161164.Google Scholar
3. Aguglia, W., Gambardella, A., Oliven, RL., et al. Non-metabolic causes of triphasic waves. A reappraisal. Clin Electroencephalog 1990; 21: 120125.Google Scholar
4. Fisch, BJ., Klass, DW. The diagnostic specificity of triphasic wave patterns. Electroencephalogr Clin Neurophysiol 1988; 70: 18.CrossRefGoogle ScholarPubMed
5. Harner, RN., Simsarian, JP. Triphasic waves in metabolic encephalopathy. Electroencephalogr Clin Neurophysiol 1974; 36: 222.Google Scholar
6. Karnaze, DS., Bickford, RG. Triphasic waves: a reassessment of their significance. Electroencephalogr Clin Neurophysiol 1984; 57: 193198.Google Scholar
7. MacGillivray, BB., Kennedy, JK. The “triphasic waves” of hepatic encephalopathy. Electroencephalogr Clin Neurophysiol 1970; 28: 428.Google Scholar
8. Reiher, J. The electroencephalogram in the investigation of metabolic comas. Electroencephalogr Clin Neurophysiol 1970; 28: 104.Google Scholar
9. Simsarian, JP., Harner, RN. Diagnosis of metabolic encephalopathy: significance of triphasic waves in the electroencephalogram. Neurology 1972; 22: 456.Google Scholar
10. Sundaram, MBM., Blume, WT. Triphasic waves: clinical correlates and morphology. Can J Neurol Sci 1987; 14: 136140.Google Scholar
11. Swash, M., Rowan, AJ. Electroencephalographic criteria of hypocalcemia and hypercalcemia. Arch Neurol 1972; 26: 218228.Google Scholar
12. Towsend, JB., Drury, I. Triphasic waves in coma from brainstem infarction. Eur Neurol 1991; 31, 4749.Google Scholar
13. Jasper, HH., Droogleever-Forturn, J. Experimental studies on the functional anatomy of petit mal epilepsy. Res Pubi Assoc Res Nerv Ment Dis 1946; 26: 272278.Google Scholar
14. Pollen, DA., Reid, KH., Perot, P. Microelectrode studies of experimental 3/sec wave and spike in the cat. Electroencephalogr Clin Neurol 1964; 17: 5767.Google Scholar
15. Pollen, DA., Sie, PG. Analysis of thalamic induced wave and spike by modification in cortical excitability. Electroencephalogr Clin Neurol 1964; 17: 154163.Google Scholar
16. Quesney, LF., Gloor, P., Kratzenberg, E., Zumstein, H. Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical structures. I. Systematic application of penicillin. Electroencephalogr Clin Neurol 1977; 42: 640655.Google Scholar
17. Gloor, P., Quesney, LF., Zumstein, H. Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical structures. II. Topical application of penicillin to the cerebral cortex and to subcortical structures. Electroencephalogr Clin Neurol 1977; 43: 7994.CrossRefGoogle Scholar
18. Gloor, P. Generalized epilepsy with spike-and-wave discharge. A reinterpretation of its electrographic and clinical manifestations. Epilepsia 1979; 20: 571588.CrossRefGoogle ScholarPubMed
19. Crunelli, V., Leresche, N. A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends Neurol Sci. 1991; 14: 1621.Google Scholar
20. Crunelli, V., Lightowler, S., Pollard, CE. A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. J Physiol (Lond) 1989; 413: 543561.Google Scholar
21. Coulter, DA., Huguenard, JR., Prince, DA. Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol (Lond) 1989; 414: 587604.Google Scholar
22. Coulter, DA., Huguenard, JR., Prince, DA. Characterization of ethosuximide reduction of low threshold calcium current in thalamic neurons. Ann Neurol 1989; 25: 582593.Google Scholar
23. Huguenard, JR., Prince, DA. A novel T-type current underlies prolonged Ca2+ – dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neuroscience 1992; 12: 38043817.Google Scholar