Dopamine agonists have yielded two important advances to our understanding of the basal ganglia – they have facilitated the subdivision of different classes of dopamine receptors, and they have established the fact that important dopaminergic effects can be achieved by activation of dopamine receptors in a manner that is unrelated to anoxal impulse traffic in dopaminergic neurons – a phenomenon similar in its diffuse, slow, characteristics to an endocrine effect.
The tangible clinical benefit of dopamine agonists has been evident in patients with prominent dyskinesia or wearing off reactions. It is possible that earlier use of agonists, in low doses combined with similarly low doses of levodopa, may improve the long term treatment of Parkinson’s disease, but as yet there is no firm evidence.
In the future, we can expect to see agonists with more prolonged effects, deriving from the formation of active metabolites. We can also hope to gain further insight into the correlations between the various animal models of dopaminomimetic activity, and specific aspects of drug efficacy and toxicity in parkinsonian patients. Such information should allow the design of improved pharmacotherapy.