Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T06:59:46.188Z Has data issue: false hasContentIssue false

Bolzano on conceptual and intuitive truth: the point and purpose of the distinction

Published online by Cambridge University Press:  01 January 2020

Mark Textor*
Affiliation:
aDepartment of Philosophy, King's College London, London, UK

Abstract

Bolzano incorporated Kant's distinction between intuitions and concepts into the doctrine of propositions by distinguishing between conceptual (Begriffssätze an sich) and intuitive propositions (Anschauungssätze an sich). An intuitive proposition contains at least one objective intuition, that is, a simple idea that represents exactly one object; a conceptual proposition contains no objective intuition. After Bolzano, philosophers dispensed with the distinction between conceptual and intuitive propositions. So why did Bolzano attach philosophical importance to it? I will argue that, ultimately, the value of the distinction lies in the fact that conceptual and intuitive truths have different objective grounds: if a conceptual truth is grounded at all, its ground is a conceptual truth. The difference in grounds between conceptual and intuitive truths motivates Bolzano's criticism of Kant's view that intuition plays the fundamental role in mathematics, a conceptual science by Bolzano's lights.

Type
Articles
Copyright
Copyright © The Authors 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolzano, B. 1810. Beyträge zu einer begründeteren Darstellung der Mathematik Prag: Caspar Widtmann.Google Scholar
Bolzano, B. Post 1810. “Aetiologie”. In Mathematische und philosophische Schriften 1810–16 Bernard Bolzano Gesamtausgabe Edited by: Berg, J. Series 2A, Vol. 5 Stuttgart-Bad Cannstatt: Frommann-Holzboog.Google Scholar
Bolzano, B. 1833ffa. Von der Mathematischen Lehrart Stuttgart-Bad Cannstatt: Frommann-Holzboog. 1981, edited by J. Berg. Translated in On the Mathematical Method and Correspondence with Exner, edited and transl. by R. George and P. Rusnock, Amsterdam/New York: Rodopi, 2004Google Scholar
Bolzano, B. 1833ffb. Einleitung zur Grössenlehre und Erste Begriffe der Allgemeinen Grössenlehre Edited by:Berg, J. Stuttgart-Bad Cannstatt 1975: Friedrich Frommann Verlag (Günther Holzboog).Google Scholar
Bolzano, B. 1837. Wissenschaftslehre Bd. I-IV, Second reprint of the second edition, Leipzig 1929 Edited by:Schulz, W. Aalen: Scientia Verlag. 1981Google Scholar
Bolzano, B. 1841. Bolzano's Wissenschaftslehre und Religionswissenschaft in einer beurtheilenden Übersicht Sulzbach: Seidelsche Buchhandlung.Google Scholar
Betti, A. 2010. Explanation in Metaphysics and Bolzano's Theory of Ground and Consequence. Logique et analyse 211: 281316.Google Scholar
Buhl, G. 1958. Ableitbarkeit und Abfolge in der Wissenschaftstheorie Bolzanos. Kantstudien Ergänzungsheft 83Google Scholar
Burge, T. 1993. Content Preservation. The Philosophical Review 102: 457488.CrossRefGoogle Scholar
Burke, M. and Rusnock, P. 2010. Etchemendy and Bolzano and Logical Consequence. History and Philosophy of Logic 31: 329.Google Scholar
Coffa, A. 1982. Kant, Bolzano and the Emergence of Logicism. The Journal of Philosophy 79: 679689.Google Scholar
Crusius, C. A. 1747. Weg zur Gewißheit und Zuverläßigkeit der menschlichen Erkenntniß Leipzig: Johann Friedrich Gleditsch.Google Scholar
Dubucs, J. and Lapointe, S. 2006. On Bolzano's Alleged Explicativism. Synthese 150: 229246.CrossRefGoogle Scholar
Dummett, M. 1991. Frege–philosophy of mathematics London: Duckworth.Google Scholar
Fine, K. 1995. Ontological Dependence. Proceedings of the Aristotelian Society 95: 269290.CrossRefGoogle Scholar
Fine, K. 2005. Papers on Modality and Tense Oxford: Oxford University Press.CrossRefGoogle Scholar
Kant, I. 1755. “Principiorum primorum cognitionis metaphysicae nova delucidatio.” transl. as “A New Elucidation of the First Principles of Metaphysical Cognition”. In Theoretical Philosophy 1755–1770 Cambridge: Cambridge University Press, 1992. trans. and ed. D. Walford in collaboration with R. Meerbote (The Cambridge Edition of the Works of Immanuel Kant Vol. 1)Google Scholar
Kant, I. 1781/1787. Kritik der reinen Vernunft, Gesammelte Schriften English Translation by N. Kemp Smith Houndsmill, Basingstoke, New York: Palgrave Macmillan. 2007Google Scholar
Kitcher, P. 1975. Bolzano's ideal of algebraic analysis. Studies in History and Philosophy of Science 6: 229269.CrossRefGoogle Scholar
Künne, W. 1997. Propositions in Bolzano and Frege. Grazer Philosophische Studien 53: 203240.Google Scholar
Leibniz, G. W. F. 1765. Nouveaux Essais Sur L'Entendement Humain French and German Frankfurt a.M.: Suhrkamp Verlag.Google Scholar
Locke, J. 1690. An Essay concerning Human Understanding Edited by:Nidditch, P. H. Oxford: Oxford University Press. 1975CrossRefGoogle Scholar
Mancuso, P. 1999. Bolzano and Cournot on Mathematical Explanation. Revue d'histoire de sciences 52: 429456.CrossRefGoogle Scholar
Peacocke, C. 1992. A Study of Concepts Cambridge, Mass.: M.I.T. Press.Google Scholar
Quine, W. V. O. 1960. Carnap on Logical Truth. Synthese 12: 350374.CrossRefGoogle Scholar
Rosen, G. 2010. “Metaphysical dependence: grounding and reduction”. In Modality: Metaphysics, Logic and Epistemology Edited by:Hale, B. and Hoffman, A. 109136. Oxford University Press: Oxford.CrossRefGoogle Scholar
Rusnock, P. 2000. Bolzano's Philosophy and the Emergence of Modern Mathematics Amsterdam: Rodopi.Google Scholar
Rusnock, P. 2012. Remarks on Bolzano's Conception of Necessary Truth. British Journal for the History of Philosophy 20: 817837.CrossRefGoogle Scholar
Shaffer, J. 2009. “On What Grounds What”. In Metametaphysics Edited by:Chalmers, D. Manley, D. and Wasserman, R. 347383. Oxford: Oxford University Press.Google Scholar
Siebel, M. 1997. Variation, Derivability and Necessity. Grazer Philosophische Studien 53: 117137.Google Scholar
Smit, H. 2000. Kant on Marks and the Immediacy of Intuition. The Philosophical Review 109: 235266.CrossRefGoogle Scholar
Sundholm, G. 2011. “A Garden of Grounding Trees”. In Logic and Knowledge Edited by:Celluci, C. Grosholz, E. and Ippoliti, E. 5775. Cambridge: Cambridge Scholars Publishing.Google Scholar
Tatzel, A. 2002. Bolzano's Theory of Ground and Consequence. Notre Dame Journal of Formal Logic 43: 125.CrossRefGoogle Scholar
Textor, M. 1996. Bolzanos Propositionalismus Berlin/New York: DeGruyter. (Reprint 2010)CrossRefGoogle Scholar
Textor, M. 2001. Logically Analytic Propositions A Posteriori?. History of Philosophy Quarterly 18: 91113.Google Scholar
Textor, M. In print. “Bolzano's Anti-Kantianism: From a priori cognitions to conceptual truths”. In The Oxford Handbook of the History of Analytic Philosophy Edited by:Beaney, M. Oxford: Oxford University Press.Google Scholar