Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T05:36:50.981Z Has data issue: false hasContentIssue false

Definitions of Kant’s categories

Published online by Cambridge University Press:  01 January 2020

Tyke Nunez*
Affiliation:
Philosophy Department, University of Pittsburgh, Pittsburgh, PA, USA
*

Abstract

The consensus view in the literature is that, according to Kant, definitions in philosophy are impossible. While this is true prior to the advent of transcendental philosophy, I argue that with Kant’s Copernican Turn definitions of some philosophical concepts, the categories become possible. Along the way I discuss issues like why Kant introduces the ‘Analytic of Concepts’ as an analysis of the understanding, how this faculty, as the faculty for judging, provides the principle for the complete exhibition of the categories, how the pure categories relate to the schematized categories, and how the latter can be used on empirical objects.

Type
Research Article
Copyright
Copyright © Canadian Journal of Philosophy 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, L. W. 1956. “Kant’s Theory of Definition.” Philosophical Review 65 (2): 179191.CrossRefGoogle Scholar
Boswell, T. 1988. “On the Textual Authenticity of Kant’s Logic.” History and Philosophy of Logic 9 (2): 193203.CrossRefGoogle Scholar
Capozzi, M. 1981. “Kant on Mathematical Definitions.” In Italian Studies in the Philosophy of Science. Vol. 47, edited by , M. D., 423452. Dordrecht: Boston Studies in the Philosophy of Science.CrossRefGoogle Scholar
Carson, E. 1999. “Kant on the Method of Mathematics.” Journal of the History of Philosophy 37 (4)CrossRefGoogle Scholar
Dunlop, K. L. 2005. “Kant on the Reality of Mathematical Definitions.” PhD diss., University of California, Los Angeles, California, United States.Google Scholar
Dunlop, K. L. 2011. “Kant and Strawson on the Content of Geometrical Concepts.” Noûs.Google Scholar
Kant, I. 1979. Werke (24 Bd.) Akademie Textausgabe. Berlin: Walter de Gruyter GmbH.Google Scholar
Kant, I., and , H.. 1973. The Kant-Eberhard Controversy: An English Translation. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Kant, I., , H., Heath, P., Hatfield, G., and Friedman, M.. 2010. Theoretical Philosophy after 1781, (The Cambridge Edition of the Works of Immanuel Kant in Translation). Cambridge: Cambridge University Press.Google Scholar
Kant, I., , P., and Wood, A.. 1999. Critique of Pure Reason (The Cambridge Edition of the Works of Immanuel Kant in Translation). Cambridge: Cambridge University Press.Google Scholar
Kant, I., and , J.. 2004. Lectures on Logic (The Cambridge Edition of the Works of Immanuel Kant). Cambridge: Cambridge University Press.Google Scholar
Maddy, P. 1999. “Logic and the Discursive Intellect.” Notre Dame Journal of Formal Logic 40 (1): 94115.CrossRefGoogle Scholar
Rosenkoetter, T. 2009. “Truth Criteria and the Very Project of a Transcendental Logic.” Archiv für Geschichte der Philosophie 91 (2): 193236.CrossRefGoogle Scholar
Shabel, L. 2010. “The Transcendental Aesthetic.” In The Cambridge Companion to Kant’s Critique of Pure Reason, edited by , P.. Cambridge: Cambridge University Press.Google Scholar
Stuhlmann-Laeisz, R. 1976. Kants Logik (QuELLEN und Studien zur Philosophie). Vol. 9. Berlin: Walter de Gruyter.Google Scholar
Sutherland, D. 2010. “Philosophy, Geometry, and Logic in Leibniz, Wolff, and the Early Kant.” In Discourse on a New Method: Reinvigorating the Marriage of History and Philosophy of Science, edited by , M. D. M., 155192. Chicago, IL: Open Court.Google Scholar
von Wolff-Metternich, B. -S. 1995. Die Überwindung des Mathematischen Erkenntnisideals (Quellen und Studien zur Philosophie). Vol. 39. Berlin: Walter de Gruyter.CrossRefGoogle Scholar