Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T03:26:55.582Z Has data issue: false hasContentIssue false

Interactions between Cold Ambient Temperature and Older Age on Haptic Acuity and Manual Performance*

Published online by Cambridge University Press:  13 May 2013

Panteha Tajmir
Affiliation:
Department of Occupational Science and Occupational Therapy, University of Toronto
Lawrence E. M. Grierson*
Affiliation:
Toronto Rehabilitation Institute, Toronto Department of Family Medicine, McMaster University
Heather Carnahan
Affiliation:
Department of Occupational Science and Occupational Therapy, University of Toronto Toronto Rehabilitation Institute, Toronto The Centre for Ambulatory Care Education, Women’s College Hospital, Toronto
*
Correspondence and requests for offprints should be sent to / La correspondance et les demandes de tirés-à-part doivent être adressées à: Lawrence E. M. Grierson, Ph.D. Department of Family Medicine McMaster University McMaster Innovation Park 175 Longwood Road South, Suite 201-A Hamilton, ON L8P 0A1 (lawrencegrierson@gmail.com)

Abstract

The impact of exposure to cold on individuals’ motor skills demands a deeper understanding of the ways in which cold weather influences psychomotor and haptic performance. In this study, various facets of psychomotor performance were evaluated in order to determine the impacts of ambient cold exposure on older persons. Healthy younger and older persons performed a battery of haptic psychomotor tests at room (23° C) and cold (1° C) ambient temperatures. The results indicate that older individuals do not perform as well as younger persons across the battery of tests, with cold temperature further degrading their performance in dexterity tasks (in, for example, Minnesota Manual Dexterity test placing: F [1, 16] = 10.23, p < .01) and peak precision grip force generation (F [1, 16] = 18.97, p < .01). The results suggest that cold weather may have an impact on the occupations older persons are able to perform during the winter months.

Résumé

L’impact de l’exposition au froid sur les aptitudes motrices individuelles exige une meilleure compréhension de la façon dont le froid influence les performances psychomotrices et haptiques. Dans cette étude, les différentes facettes de la performance psychomotrice ont été analysées afin de detérminer les effets de l’exposition au froid ambiant sur les personnes âgées. Des personnes et jeunes et plus âgées en bonne santé ont effectué une batterie de tests psychomoteurs haptiques aux températures ambiantes (23° C) et froids (1° C) pour déterminer les effets de l’exposition au froid ambiant sur les personnes âgées. Les résultats indiquent que les personnes âgées n’achèvent pas les résultats aussi forts que ceux des personnes plus jeunes à travers la batterie de tests, et qu’une température froide dégrade davantage leur dexterité pour les tâches (par exemple, leur niveau dans le Minnesota Manual Dexterity Test: F [1, 16] = 10,23, p < .01) et la génération de la force de préhension de précision avec une precision de pointe (F [1, 16] = 18,97, p < .01). Les résultats suggèrent que le froid peut avoir un impact en limitant les activités auxquelles les aînés peuvent se livrer pendant les mois d’hiver.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was generously supported by the Natural Sciences and Research Council of Canada. H. Carnahan is supported by the BMO Chair in Health Professions Education Research.

References

Becker, J.T., & Morris, R.G. (1999). Working memory. Brain and Cognition, 4, 18.Google Scholar
Caplan, D., Dede, G., Waters, G., Michaud, J., & Tripodis, Y. (2011). Effects of age, speed of processing, and working memory on comprehension of sentences with relative clauses. Physiological Aging, 26, 439450.Google Scholar
Carnahan, H., Dubrowski, A., & Grierson, L.E.M. (2009). Temperature influences both haptic perception and force production when grasping. International Journal of Industrial Ergonomics, 40, 5558.Google Scholar
Castellani, J.W., Lieberman, H.R., & Sawka, M.N. (2008). Hydration effects on cognitive performance during military tasks in temperate and cold environments. Physiology & Behavior, 93, 748756.Google Scholar
Castellani, J.W., Young, A.J., Ducharme, M.B., Giesbrecht, G.G., Glickman, E., & Sallis, R.E. (2006). Prevention of cold injuries during exercise. Medicine and Science in Sports and Exercise, 38, 20122029.Google Scholar
Chen, F., Liu, Z.Y., & Holmér, I. (1996). Hand and finger skin temperatures in convective and contact cold exposure. European Journal of Applied Physiology and Occupational Psychology, 72, 372379.CrossRefGoogle ScholarPubMed
Daanen, H.A.M., van de Vliert, E., & Huang, X. (2003). Driving performance in cold, warm, and room environments. Applied Ergonomics, 34, 597602.Google Scholar
Danielsson, U. (1996). Windchill and the risk of tissue freezing. Journal of Applied Physiology, 81, 26662673.Google Scholar
Dinse, H.R., Kalisch, T., Ragert, P., Pleger, B., Schwenkreis, P., & Tegenthoff, M. (2005). Improving human haptic performance in normal and impaired human populations through unattended activation-based learning. ACM Transactions on Applied Perception, 2, 7188.CrossRefGoogle Scholar
Donaldson, G.C., Rintamaki, H., & Näyhä, S. (2001). Outdoor clothing: Its relationship to geography, climate, behaviour and cold-related mortality in Europe. International Journal of Biometeorology, 45, 4551.Google Scholar
Elliott, D., Hansen, S., Grierson, L.E.M., Lyons, J.L., Bennett, S.J., & Hayes, S.J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136, 10231044.Google Scholar
Enander, A. (1987). Effects of moderate cold on performance of psychomotor and cognitive tasks. Ergonomics, 30, 14311445.Google Scholar
Eurowinter Group: Keatinge, W.R., Donaldson, G.C., Bucher, K., Cordioli, E., Dardanoni, L., Jendritzky, G., et al. (1997). Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Lancet, 349, 13411346.Google Scholar
Green, B.G. (2004). Temperature perception and nociception. Journal of Neurobiology, 61, 1329.Google Scholar
Hancock, P.A., Ross, J.M., & Szalma, J.L. (2007). A meta-analysis of performance response under thermal stressor. The Journal of the Human Factors and Ergonomics Society, 49, 851877.CrossRefGoogle Scholar
Heus, R., Daanen, H.A.M., & Havenith, G. (1995). Physiological criteria of hand functioning in the cold: A review. Applied Ergonomics, 26, 513.Google Scholar
Imamura, R., Rissanen, S., Kinnunen, M., & Rintamaki, H. (1998). Manual performance in cold conditions while wearing NBC clothing. Ergonomics, 41, 14211432.CrossRefGoogle ScholarPubMed
Kalisch, T., Tegenthoff, M., & Dinse, H.R. (2008). Improvement of sensorimotor functions in old age by passive sensory stimulation. Clinical Interventions in Aging, 3, 673690.CrossRefGoogle ScholarPubMed
Keatinge, W.R., Coleshaw, S.R.K., Cotter, F., Mattock, M., Murphy, M., & Chelliah, R. (1984). Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling: Factors in mortality from coronary and cerebral thrombosis in winter. British Medical Journal, 289, 14051408.Google Scholar
King, E.C., Lee, T.A., McKay, S.M., Scovil, C.Y., Peters, A.L., Pratt, J.A., et al. (2011). Does the “eyes lead the hand” principle apply to reach-to-grasp movements evoked by unexpected balance perturbations? Human Movement Science, 30, 368383.Google Scholar
Maccoby, E.E., & Jacklin, C.N. (1974). The psychology of sex differences. Stanford, CA: Stanford University Press.Google Scholar
Martin, P.Y., & Benton, D. (1999). The influence of a glucose drink on a demanding working memory task. Physiological Behavior, 67, 6974.Google Scholar
Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411421.Google Scholar
Palinkas, L.A. (2001). Mental and cognitive performance in the cold. International Journal of Circumpolar Health, 60, 430439.CrossRefGoogle ScholarPubMed
Pilcher, J.J., Nadler, E., & Busch, C. (2002). Effects of hot and cold temperature exposure on performance: A meta-analytic review. Ergonomics, 45, 682698.Google Scholar
Schroeder, J.A. (2010). Sex and gender in sensation and perception. Handbook of Gender Research in Psychology, 3, 235257.Google Scholar
Smolander, J. (2002). Effect of cold exposure on older humans. International Journal of Sports Medicine, 23, 8692.Google Scholar
Waters, G., & Caplan, D. (2005). The relationship between age, processing speed, working memory capacity, and language comprehension. Memory, 13, 403413.Google Scholar
Weiss, V. (1986). From memory span to quantum mechanics of intelligence. Personality and Individual Differences, 7, 737749.Google Scholar
Young, A.J., & Lee, D.T. (1997). Aging and human cold tolerance. Experimental Aging Research, 23, 4567.CrossRefGoogle ScholarPubMed
Zander, J., & Morrison, J. (2008). Effects of pressure, cold and gloves on hand skin temperature, and manual performance of divers. European Journal of Applied Physiology, 104, 237244.Google Scholar