Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T18:16:46.211Z Has data issue: false hasContentIssue false

A Validation Study of Memory and Executive Functions Indexes in French-Speaking Healthy Young and Older Adults*

Published online by Cambridge University Press:  20 January 2014

Alexandra Fortin
Affiliation:
Centre de recherche, Institut universitaire de gériatrie de Montréal and Département de psychologie, Université de Montréal
Nicole Caza*
Affiliation:
Centre de recherche, Institut universitaire de gériatrie de Montréal and Département de psychologie, Université de Montréal
*
Correspondence and requests for offprints should be sent to /La correspondance et les demandes de tirés-à-part doivent être adressées à: Nicole Caza, Ph.D. Centre de recherche Institut universitaire de gériatrie de Montréal 4565 Queen Mary Montréal, QC H3W 1W5 (nicole.caza@umontreal.ca)

Abstract

Medial temporal lobe (MTL)/memory and frontal lobe (FL)/executive functions indexes are used to measure changes related to cognitive aging. These indexes are based on composite scores of neuropsychological tests validated in English-speaking populations, and their use in aging research is growing in popularity. This study aimed at validating the MTL/memory and FL/executive functions indexes in French-speaking adults. Ninety-eight healthy participants (32 young and 66 older adults) were tested on eight neuropsychological tests, three associated with MTL/memory functions and five associated with FL/executive functions. Factor analysis indicated that residual scores independent of age and associated with MTL/memory functions grouped under one factor, and residual scores associated with FL/executive functions grouped under another factor. Bootstrapping analysis with 1,000 resamples confirmed stability for seven neuropsychological tests. This study provides the first validation of the MTL/memory and FL/executive functions composite scores in French-speaking adults, which may be used to assess cognitive changes in aging research.

Résumé

Des scores composites mesurant les fonctions temporales médianes (FTM)/la mémoire et les fonctions frontales (FF)/exécutives sont utilisés pour indexer les changements cognitifs reliés au vieillissement. L’utilisation de ces scores en recherche gagne en popularité, mais s’appuie essentiellement sur les résultats de tests neuropsychologiques auprès des populations anglophones. Cette étude visait à valider les scores composites des FTM/la mémoire et FF/exécutives auprès d’adultes francophones. Quatre-vingt-dix-huit participants sains (32 jeunes et 66 âgés) ont été évalués à l’aide de trois tests neuropsychologiques associés aux FTM et cinq tests associés aux FF. Une analyse factorielle effectuée sur les scores résiduels indépendants de l’âge indique que les tests associés aux FTM et ceux associés aux FF se regroupent en deux facteurs distincts. Une analyse de type « bootstrapping » impliquant 1 000 rééchantillons indique que sept tests sont stables. Cette étude valide pour la première fois en français, des scores composites mesurant les FTM et FF.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This article is based on data from a doctoral dissertation. This work was supported by grant no. MOP-68890 from the Canadian Institutes of Health Research and salary support from the Fonds québécois de la recherche – Santé (15989) to N. Caza, and by a postgraduate scholarship (no. PGSD3-392832-2010) from the Natural Sciences and Engineering Research Council of Canada to A. Fortin. The authors thank Francine Giroux for her help with statistical analyses. Thanks also to Joanie Drapeau and Rosemarie Perrault for helping with neuropsychological testing of participants.

References

Alexander, M. P., Stuss, D. T., Picton, T., Shallice, T., & Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68, 15151523. doi: 10.1212/01.wnl.0000261482.99569.fb.Google Scholar
Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16(1), 1742. doi: 10.1007/s11065-006-9002-x.Google Scholar
Anderson, N. D., Ebert, P. L., Jennings, J. M., Grady, C. L., Cabeza, R., & Graham, S. J. (2008). Recollection- and familiarity-based memory in healthy aging and amnestic mild cognitive impairment. Neuropsychology, 22(2), 177187. doi: 10.1037/0894-4105.22.2.177.Google Scholar
Anderson, N. D., Guild, E. B., Cyr, A.-A., Roberts, J., & Clare, L. (2012). Contributions of frontal and medial temporal lobe functioning to the errorless learning advantage. Neuropsychological Rehabilitation, 22(2), 169186. doi: 10.1080/09602011.2011.639609.Google Scholar
Arsenault-Lapierre, G., Whitehead, V., Belleville, S., Massoud, F., & Chertkow, H. (2011). Mild cognitive impairment subcategories depend on the source of norms. Journal of Clinical and Experimental Neuropsychology, 33(5), 596603. doi: 10.1080/13803395.2010.547459.CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. H. (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 4789). New York, NY: Academic Press.Google Scholar
Balota, D. A., Dolan, P. O., & Duchek, J. M. (2000). Memory changes in healthy older adults. In Tulving, E. & Craik, F. I. M. (Eds.), The Oxford handbook of memory (pp. 395409). Oxford, UK: Oxford University Press.Google Scholar
Beck, A. T., Rial, W. Y., & Rickets, K. (1974). Short form of depression inventory: Cross-validation. Psychological Reports, 34(3), 11841186. doi: 10.1177/0306624X06294137.Google Scholar
Belleville, S., Sylvain-Roy, S., de Boysson, C., & Ménard, M.-C. (2008). Characterizing the memory changes in persons with mild cognitive impairment. Progress in Brain Research, 169, 365375. doi: 10.1016/S0079-6123(07)00023-4.Google Scholar
Benton, A. L. (1968). Differential behavioral effects in frontal lobe disease. Neuropsychologia, 6, 5360. doi: 10.1016/0028-3932(68)90038-9.Google Scholar
Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer’s disease. Lancet, 368(9533), 387403. doi: 10.1016/s0140-6736(06)69113-7.CrossRefGoogle ScholarPubMed
Briggs, S. R., & Cheek, J. M. (1986). The role of factor analysis in the development and evaluation of personality scales. Journal of Personality, 54(1), 106148. doi: 10.1111/j.1467-6494.1986.tb00391.x.Google Scholar
Bryan, J., & Luszcz, M. A. (2000). Measurement of executive function: Considerations for detecting adult age differences. Journal of Clinical and Experimental Neuropsychology, 22(1), 4055. doi: 10.1076/1380-3395(200002)22:1;1–8;FT040.CrossRefGoogle ScholarPubMed
Caza, N., Taha, R., Qi, Y., & Blaise, G. (2008). The effects of surgery and anesthesia on memory and cognition. In Sossin, V. S., Lacaille, J. C., Castellucci, V. F., & Belleville, S. (Eds.), Progress in Brain Research (Vol. 169, pp. 409422): Amsterdam, The Netherlands: Elsevier.Google Scholar
Chan, J. C. K., & McDermott, K. B. (2007). The effects of frontal lobe functioning and age on veridical and false recall. Psychonomic Bulletin & Review, 14(4), 606611. doi: 10.3758/bf03196809.Google Scholar
Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis (2nd ed.) Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Craik, F. I. M., Anderson, N. D., Kerr, S. A., & Li, K. Z. H. (1995). Memory changes in normal ageing. In Baddeley, A., Wilson, B. A., & Watts, F. N. (Eds.), Handbook of memory disorders (pp. 211242). Chichester, England: John Wiley & Sons.Google Scholar
Craik, F. I. M., & Salthouse, T. A. (2000). The handbook of aging and cognition. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Craik, F. I. M., & Salthouse, T. A. (2008). The handbook of aging and cognition (3rd ed.). New York, NY: Psychology Press.Google Scholar
Daniels, K., Toth, J., & Jacoby, L. L. (2006). The aging of executive functions. In Bialystok, E. & Craik, F.I.M. (Eds.), Lifespan cognition: Mechanisms of change (pp. 96111). New York, NY: Oxford University Press.Google Scholar
de Jager, C. A., Hogervorst, E., Combrinck, M., & Budge, M. M. (2003). Sensitivity and specificity of neuropsychological tests for mild cognitive impairment, vascular cognitive impairment and Alzheimer’s disease. Psychological Medicine, 33, 10391050. doi: 10.1017/S0033291703008031.Google Scholar
Diaconis, P., & Efron, B. (1983). Computer-intensive methods in statistics. Scientific American, 248(5), 116130. doi: 10.1038/scientificamerican0583-116.Google Scholar
Fjell, A. M., & Walhovd, K. B. (2010). Structural brain changes in aging: Courses, causes and cognitive consequences. Reviews in Neurosciences, 21, 187221. doi: 10.1515/REVNEURO.2010.21.3.187.Google Scholar
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198. doi: 10.1016/0022-3956(75)90026-6.Google Scholar
Fontaine, F., & Joubert, S. (2010). Fluence formelle et sémantique: Données normatives pour une population francophone âgée vivant au Québec depuis au moins 40 ans [En ligne]. Retrieved July 23, 2012 from http://www.criugm.qc.ca/outilscliniques/fiche.html?f_num=69.Google Scholar
Gérard, M. (1983). Contribution à l’évaluation de la détérioration mentale chez l’adulte à l’aide du test de vocabulaire Mill Hill [Contribution of the assessment of mental deterioration in the adult with the Mill Hill vocabulary test] . Unpublished master’s thesis. Liège, Belgium: University of Liège.Google Scholar
Glisky, E. L., & Kong, L. L. (2008). Do young and older adults rely on different processes in source memory tasks? A neuropsychological study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(4), 809822. doi: 10.1037/0278-7393.34.4.809.Google Scholar
Glisky, E. L., Polster, M. R., & Routhieaux, B. C. (1995). Double dissociation between item and source memory. Neuropsychology, 9(2), 229235. doi: 10.1037/0894-4105.9.2.229.Google Scholar
Glisky, E. L., Rubin, S. R., & Davidson, P. S. R. (2001). Source memory in older adults: An encoding or retrieval problem? Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(5), 11311146. doi: 10.1037//0278-7393.27.5.1131.Google Scholar
Hart, R. P., Kwentus, J. A., Wade, J. B., & Taylor, J. R. (1988). Modified Wisconsin Sorting est in elderly normal, depressed and demented patients. Clinical Neuropsychologist, 2, 4956. doi: 10.1080/13854048808520085.CrossRefGoogle Scholar
Henkel, L. A., Johnson, M. K., & De Leonardis, D. M. (1998). Aging and source monitoring: Cognitive processes and neuropsychological correlates. Journal of Experimental Psychology. General, 127(3), 251268. doi: 10.1037/0096-3445.127.3.251.Google Scholar
Hoops, S., Nazem, S., Siderowf, A. D., Duda, J. E., Xie, S. X., Stern, M. B., et al. (2009). Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology, 73, 17381745. doi: 10.1212/WNL.0b013e3181c34b47.Google Scholar
Jonker, C., Geerlings, M. I., & Schmand, B. (2000). Are memory complaints predictive for dementia? A review of clinical and population-based studies. International Journal of Geriatric Psychiatry, 15, 983991. doi: 10.1002/1099-1166.Google Scholar
Kongs, S. K., Thompson, L. L., Iverson, G. L., & Heaton, R. K. (2000). Wisconsin Card Sorting Test-64 card version. Odessa, FL: Psychological Assessment Resources.Google Scholar
Lemaire, P., & Bherer, L. (2005). Vieillissement et mémoire. In Boeck, D. (Ed.), Psychologie du vieillissement (pp. 119157): Bruxelle, Belgique: Ouvertures Psychologiques.Google Scholar
Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). New York, NY: Oxford University Press.Google Scholar
McCabe, D. P., Roediger, H. L., McDaniel, M. A., & Balota, D. A. (2009). Aging reduces veridical remembering but increases false remembering: Neuropsychological test correlates of remember-know judgments. Neuropsychologia, 47(11), 21642173. doi: 10.1016/j.neuropsychologia.2008.11.025.Google Scholar
McCabe, D. P., Roediger, H. L., McDaniel, M. A., Balota, D. A., & Hambrick, D. Z. (2010). The relationship between working memory capacity and executive functioning: Evidence for a common executive attention construct. Neuropsychology, 24(2), 222243. doi: 10.1037/a0017619.Google Scholar
McDaniel, M. A., Einstein, G. O., & Jacoby, L. L. (2008). New considerations in aging and memory, The glass may be half full. In Craik, F. I. M. & Salthouse, T. A. (Eds.), The handbook of aging and cognition (3rd ed.) (pp. 251310). New York, NY: Psychology Press.Google Scholar
Miller, B. L. (1964). Some effects of frontal lobectomy in man. In Warren, J. M. & Akert, K. (Eds.), The frontal granular cortex and behavior (pp. 313335). New York, NY: McGraw Hill.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contribution to complex frontal lobe tasks: A latent variable analysis. Cognitive Psychology, 41, 49100. doi: 10.1006/cogp.1999.0734.Google Scholar
Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control. New York, NY: Cambridge University Press.Google Scholar
Morrison, J. H., & Hof, P. R. (1997). Life and death of neurons in the aging cerebral cortex. International Review of Neurobiology, 81(1), 4157. doi: 10.1016/S0074-7742(06)81004-4.Google Scholar
Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699. doi: 10.1111/j.1532-5415.2005.53221.x.Google Scholar
Nyhus, E., & Barceló, F. (2009). The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: A critical update. Brain and Cognition, 71, 437451. doi: 10.1016/j.bandc.2009.03.005.CrossRefGoogle ScholarPubMed
Park, D. C., & Gutchess, A. H. (2002). Aging, cognition, and culture: A neuroscientific perspective. Neuroscience and Biobehavioral Reviews, 26, 859867. doi: 10.1016/S0149-7634(02)00072-6.Google Scholar
Petersen, R. C., Stevens, J. C., Ganguli, M., Cummings, J. L., & DeKosky, S. T. (2001). Practice parameter: Early detection of dementia: Mild cognitive impairment (an evidence-based review). Neurology, 56(9), 11331142. doi: 10.1212/WNL.56.9.1133.Google Scholar
Phillips, L. H., & Henry, J. D. (2008). Adult aging and executive functioning. In Anderson, N. D., Jacobs, R., & Anderson, P. J. (Eds.), Executive functions and the frontal lobes (pp. 5779). Philadelphia, PA: Taylor & Francis.Google Scholar
Poitrenaud, J., Deweer, B., Kalafat, M., & Van Der Linden, M. (2007). CVLT Test d’apprentissage et de mémoire verbale. Montreuil, France: ECPA.Google Scholar
Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15, 16761689. doi: 10.1093/cercor/bhi044.Google Scholar
Rubin, S. R., Van Petten, C., Glisky, E. L., & Newberg, W. N. (1999). Memory conjunction errors in younger and older adults: Event-related potential and neuropsychological data. Cognitive Neuropsychology, 16(3–5), 459488. doi: 10.1080/026432999380889.Google Scholar
Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 1121. doi: 10.1037/0033-295X.102.3.419.Google Scholar
Sheikh, J. I., & Yesavage, J. A. (1986). Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. Clinical Gerontologist, 52(1–2), 165173. doi: 10.1300/J018v05n01_09.Google Scholar
Spreen, O., & Benton, A. L. (1977). Neurosensory center comprehensive examination for aphasia. Victoria, BC: University of Victoria Neuropsychology Laboratory.Google Scholar
Stuss, D. T., Benson, D. F., Kaplan, E. F., Weir, W. S., Naeser, M. A., Lieberman, I., et al. (1983). The involvement of orbitofrontal cerebrum in cognitive tasks. Neuropsychologia, 21, 235248. doi: 10.1016/0028-3932(83)90040-4.Google Scholar
Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston, MA: Allyn & Bacon.Google Scholar
Tannenbaum, C., Mayo, N., & Ducharme, F. (2005). Older women’s health priorities and perceptions of care delivery: Results of the WOW health survey. Journal of Canadian Medical Association, 173(2), 153159. doi: 10.1503/cmaj.050059.Google Scholar
Thompson, B. (1994). The pivotal role of replication in psychological research: Empirically evaluating the replicability of sample results. Journal of Personality, 62(2), 157176. doi: 10.1111/j.1467-6494.1994.tb00289.x.Google Scholar
Thompson, B. (1995). Exploring the replicability of a study’s results: Bootstrap statistics for the multivariate case. Educational and Psychological Measurement, 55, 8494. doi: 10.1177/0013164495055001008.Google Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of memory (pp. 382403). New York, NY: Academic Press.Google Scholar
Vakil, E., Raz, T., & Levy, D. A. (2010). Probing the brain substrates of cognitive processes responsible for context effects on recognition memory. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 17(5), 519544. doi: 10.1080/13825581003690182.Google Scholar
Vaughan, L., & Giovanello, K. (2010). Executive function in daily life: Age-related influences of executive processes on instrumental activities of daily living. Psychology and Aging, 25(2), 343355. doi: 10.1037/a0017729.Google Scholar
Wechsler, D. (1987). Wechsler Memory Scale-Revised. New York, NY: Psychological Corporation.Google Scholar
Wechsler, D. (1997). Échelle d’intelligence de Wechsler pour adultes – III. Toronto, ON: Psychological Corporation.Google Scholar
Wechsler, D. (2000). Échelle clinique de mémoire de Wechsler – III. Toronto, ON: Psychological Corporation.Google Scholar
Zacks, R. T., Hasher, L., & Li, K. Z. H. (2000). Human memory. In Craik, F. I. M. & Salthouse, T. A. (Eds.), The handbook of aging and cognition (pp. 293358). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Zientek, L. R., & Thompson, B. (2007). Applying the bootstrap to the multivariate case: Bootstrap component/factor analysis. Behavior Research Methods, 39(2), 318325. doi: 10.3758/BF03193163.Google Scholar