Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T22:11:53.616Z Has data issue: false hasContentIssue false

Walking with Visual Restrictions in Healthy Elderly and Young Adults

Published online by Cambridge University Press:  31 March 2010

Sean Gallagher
Affiliation:
University of Ottawa
Yves Lajoie*
Affiliation:
University of Ottawa
Michel Guay
Affiliation:
Laurentian University
*
Requests, etc., Yves Lajoie Ph.D., School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5. Email: Ylajoie@nickel.laurentian.ca

Abstract

Visual requirements for a simple walking task were evaluated for young and elderly persons to determine if, with normal aging, elderly subjects require more visual information. Ten young adults and 10 elderly people were asked to complete a simple walking task within predetermined pathway boundaries under two conditions of visual restriction. In the reactive condition, subjects automatically received a 200 ms flash of visual information at the halfway point of the walkway. For the predictive condition, subjects did not receive any visual information during the walking trial, but were equipped with an emergency button that would provide 200 ms of visual information whenever they needed it. For both experimental conditions, subjects received additional flashes of visual information if they stepped out of the walkway boundaries. Results showed that older persons stepped out of bounds more often in the reactive condition and gave themselves more visual cues than the younger subjects in the predictive condition. The relative importance of vision during locomotion seems to be higher in the elderly population when compared to young adults.

Résumé

À l'intérieur de cette expérience, nous avons évalué la quantité d'information visuelle nécessaire pour marcher à l'intérieur d'un corridor tracé sur le sol chez une population de jeunes adultes et de personnes âgées. Dix jeunes adultes et 10 personnes âgées devaient marcher à l'intérieur d'un corridor lors de deux conditions expérimentales limitant la vision. Dans la condition réactive, les sujets recevaient à mi-chemin de la longueur du corridor, 200ms d'information visuelle. Dans la condition prédictive, les sujets pouvaient, en pressant un bouton tenu dans leur main, se donner de l'information visuelle (200ms à chaque fois). Cependant, les sujets devaient se donner le moins d'information visuelle possible. De plus, les sujets recevaient de l'information visuelle à chaque fois qu'ils quittaient les limites du corridor et ce pour les deux conditions expérimentales. Les résultats démontrent que les personnes âgées sortent plus souvent des limites dans la condition réactive et qu'ils se donnent également plus d'information visuelle dans la condition prédictive. L'importance relative de la vision lors de la réalisation de la marche semble plus importante chez les personnes âgées que chez les jeunes adultes.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*This project was supported by grants from NSERC to Dr. Yves Lajoie. Special thanks to Francis Thériault for his help in computer programming and technical assistance.

References

Brocklehurst, J.C., Robertson, D., & James-Groom, P. (1982). Clinical correlates of sway in old age: Sensory modalities. Age and Ageing, 11, 110.Google Scholar
Diener, H.C., & Dichgans, J. (1988). On the role of vestibular, visual and somatosensory information for dynamic postural control in humans. Progress in Brain Research, 76, 253262.Google Scholar
Era, P., & Heikkinen, E. (1985). Postural sway during standing and unexpected disturbance of balance in random samples of men of different ages. Journal of Gerontology: Medical Sciences, 40, 287295.Google Scholar
Guralnik, J.M., Ferrucci, L., Simonsick, E.M., Salive, M.E., & Wallace, R.B. (1995). Lower extremity function in persons over the age of 70 years as a predictor of subsequent disability. New England Journal of Medicine, 332(9), 556561.CrossRefGoogle ScholarPubMed
Johnson, B.M., Miao, M., & Sadum, A.A. (1987). Age-related decline of human optic nerve. Age, 10, 59.CrossRefGoogle Scholar
King, M.B., Judge, J.O., & Wolfson, L. (1994). Functional base of support decreases with age. Journal of Gerontology: Medical Sciences, 49(6), 258263.Google Scholar
Laurent, M., & Thomson, J.A. (1988). The role of visual information in control of a constrained motor task. Journal of Motor Behavior, 20(1), 1737.Google Scholar
Lee, D.N., & Lishman, J.R. (1975). Visual proprioceptive control of stance. Journal of Human Movement Studies, 1, 8795.Google Scholar
Lipsitz, L.A., Johnson, P.V., Kelley, M.M., & Koestner, J.S. (1991). Causes and correlates of recurrent falls in ambulatory frail elderly. Journal of Gerontology, 46, 114122.CrossRefGoogle ScholarPubMed
Lord, S.R., & Webster, I.W. (1990). Visual field dependence in elderly fallers and non-fallers. International Journal of Aging and Human Development, 31(4), 267277.CrossRefGoogle ScholarPubMed
Lord, S.R., Clark, R.D., & Webster, I.W. (1991) Postural stability and associated physiological factors in a population of aged persons. Journal of Gerontology: Medical Sciences, 46(3), M69M76.Google Scholar
Maki, B.E. (1997). Gait changes in older adults: Predictors of falls or indicators of fear? Journal of American Geriatrics Society, 45(3), 313320.Google Scholar
Manchester, D., Woollacott, M., Zederbauer-Hylton, N., & Marin, O. (1989). Visual, vestibular and somatosensory contributions to balance control in the older adult. Journal of Gerontology: Medical Sciences, 44(4), M118M127.CrossRefGoogle ScholarPubMed
Milgram, P. (1987). A spectacle-mounted liquid-crystal tachistoscope. Behavior Research Methods, Instruments & Computers, 19(5), 449456.Google Scholar
Murray, M.P., Kory, R.C., & Clarkson, B.H. (1969). Walking patterns in healthy old men. Journal of Gerontology, 24, 169178.CrossRefGoogle ScholarPubMed
Nakamura, T. (1997). Quantitative analysis of gait in the visually impaired. Disability and Rehabilitation, 19(5), 194197.Google Scholar
Overstall, P.W., Exton-Smith, A.N., Imms, F.J., & Johnson, A.L. (1977). Falls in the elderly related to postural imbalance. British Medical Journal, 1, 261264.CrossRefGoogle ScholarPubMed
Patla, A.E. (1993) Age-related changes in visually guided locomotion over different terrains: major issues. In Stelmach, G.E. and Homberg, V., Eds. Sensorimotor Impairement in the Elderly. (pp. 231252). Amsterdam: Kluwer Academic Publishers.Google Scholar
Sekuler, R., Hutman, L.P., & Owsley, C.J. (1980). Human aging and spatial vision. Science, 209, 1255–%1256.CrossRefGoogle ScholarPubMed
Sheldon, J.H. (1963). The effect of age on the control of sway. Gerontology Clinics, 5, 129138.Google Scholar
Spirduso, W.W. (1995). Physical dimensions of aging. Balance, posture and locomotion. Human Kinetics, 155183.Google Scholar
Stelmach, G.E., Teasdale, N., DiFabio, R.P., & Phillips, J. (1989). Age related decline in postural control mechanisms. International Journal on Aging and Human Development, 29, 205223.Google Scholar
Teasdale, N., Stelmach, G.E., & Breunig, A. (1991). Postural sway characteristics of the elderly under normal and altered visual and support surface conditions. Journal of Gerontology: Biological Sciences, 46, B238B44.CrossRefGoogle ScholarPubMed
Thomson, J.A. (1983). Is continuous visual monitoring necessary in visually guided locomotion. Journal of Experimental Psychology: Human Perception and Performance, 9(3), 427443.Google Scholar
Tinetti, M.E., & Speechley, M. (1989). Prevention of falls among the elderly. New England Journal of Medicine, 320(16), 10551059.Google Scholar
Winter, D.A. (1991). The biomechanics and motor control of human gait: Normal, elderly and pathological, 2nd ed. Waterloo: University of Waterloo Press.Google Scholar
Winter, D.A., Patla, A.E., Frank, J.S., & Walt, S.E. (1990). Bio-mechanical walking pattern changes in the fit and healthy elderly. Physical Therapy, 70, 340347.Google Scholar
Winter, D.A. (1995). ABC (Anatomy, Biomechanics, and Control) of balance during standing and walking. Waterloo, ON: Waterloo Biomechanics.Google Scholar
Wolfson, L., Whipple, R., Derby, C., Amerman, P., Murphy, T., Tobin, J.N., & Nashner, L. (1992). A dynamic posturography study of balance in healthy elderly. Neurology, 42(11), 2069–%2075.Google Scholar