Article contents
2-Clean Rings
Published online by Cambridge University Press: 20 November 2018
Abstract
$\text{A}$ ring $R$ is said to be $n$-clean if every element can be written as a sum of an idempotent and $n$ units. The class of these rings contains clean rings and $n$-good rings in which each element is a sum of $n$ units. In this paper, we show that for any ring $R$, the endomorphism ring of a free $R$-module of rank at least 2 is 2-clean and that the ring $B\left( R \right)$ of all $\omega \,\times \,\omega$ row and column-finite matrices over any ring $R$ is 2-clean. Finally, the group ring $R{{C}_{n}}$ is considered where $R$ is a local ring.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2009
References
- 5
- Cited by