No CrossRef data available.
Article contents
Degree gaps for multipliers and the dynamical André–Oort conjecture
Published online by Cambridge University Press: 13 November 2020
Abstract
We demonstrate how recent work of Favre and Gauthier, together with a modification of a result of the author, shows that a family of polynomials with infinitely many post-critically finite specializations cannot have any periodic cycles with multiplier of very low degree, except those that vanish, generalizing results of Baker and DeMarco, and Favre and Gauthier.
MSC classification
Primary:
37P45: Families and moduli spaces
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2020
References
Baker, M. and DeMarco, L.,
Special curves and postcritically finite polynomials
. Forum Math. Pi 1(2013), e3. http://dx.doi.org/10.1017/fmp.2013.2
CrossRefGoogle Scholar
DeMarco, L., Wang, X., and Ye, H.,
Bifurcation measures and quadratic rational maps
. Proc. Lond. Math. Soc. 111(2015), 149–180. http://dx.doi.org/10.1112/plms/pdv024
CrossRefGoogle Scholar
Favre, C. and Gauthier, T.,
Classification of special curves in the space of cubic polynomials
. Int. Math. Res. Not. IMRN (2018), no. 2, 362–411. http://dx.doi.org/10.1093/imrn/rnw245
Google Scholar
Favre, C. and Gauthier, T., The arithmetic of polynomial dynamical pairs. Preprint, 2020. https://arxiv.org/abs/2004.13801
Google Scholar
Ghioca, D., Hsia, L.-C., and Tucker, T. J.,
Preperiodic points for families of rational maps
. Proc. Lond. Math. Soc. 110(2015), 395–427. http://dx.doi.org/10.1112/plms/pdu051
CrossRefGoogle Scholar
Ghioca, D., Krieger, H., and Nguyen, K. D.,
A case of the dynamical André–Oort conjecture
. Int. Math. Res. Not. (2016), no. 3, 738–758. http://dx.doi.org/10.1093/imrn/rnv143
CrossRefGoogle Scholar
Ghioca, D., Krieger, H., Nguyen, K. D., and Ye, H.,
The dynamical André–Oort conjecture: unicritical polynomials
. Duke Math. J. 166(2017), 1–25. http://dx.doi.org/10.1215/00127094-3673996
Google Scholar
Ghioca, D. and Ye, H., A dynamical variant of the André–Oort conjecture. Int. Math. Res. Not. (2018), 2447–2480. http://dx.doi.org/10.1093/imrn/rnw314
Google Scholar
Ingram, P, A finiteness result for post-critically finite polynomials. Int. Math. Res. Not. (2012) no. 3, 524–543. http://dx.doi.org/10.1093/imrn/rnr030CrossRefGoogle Scholar
Ingram, P.,
Variation of the canonical height for a family of polynomials
. J. Reine Angew. Math. 685(2013), 73–97. http://dx.doi.org/10.1515/crelle-2012-0017
Google Scholar
Ingram, P.,
The critical height is a moduli height
. Duke Math. J. 167(2018), 1311–1346. http://dx.doi.org/10.1215/00127094-2017-0053
Google Scholar
Ingram, P.,
Critical orbits of polynomials with a periodic point of specified multiplier
. Math. Zeit. 291(2019), 1245–1262. http://dx.doi.org/10.1007/s00209-018-2118-x
CrossRefGoogle Scholar
Silverman, J. H.,
Moduli spaces and arithmetic dynamics
. CRM Monograph Series, 30, American Mathematical Society, Providence, RI, 2012. http://dx.doi.org/10.1090/crmn/030
Google Scholar