Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T12:10:12.976Z Has data issue: false hasContentIssue false

Equivalences of stable categories of Gorenstein local rings

Published online by Cambridge University Press:  08 January 2025

Tony J. Puthenpurakal*
Affiliation:
Department of Mathematics, IIT-Bombay, Powai, Maharashtra, India, 400076

Abstract

In this paper, we show existence of bountiful examples of Gorenstein local rings A and B such that there is a triangle equivalence between the stable categories CM(A), CM(B).

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auslander, M. and Reiten, I., Grothendieck groups of algebras and orders . J. Pure Appl. Algebra 39(1986), 151.CrossRefGoogle Scholar
Auslander, M., Reiten, I., and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
Buchweitz, R. O., Eisenbud, D., and Herzog, J., Cohen–Macaulay modules on quadrics . In: Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture Notes in Mathematics, 1273, Springer-Verlag, Berlin, 1987, pp. 58116.CrossRefGoogle Scholar
Buchweitz, R.-O., Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings, Mathematical Surveys and Monographs, 262, American Mathematical Society, Providence, RI, 2021.CrossRefGoogle Scholar
Bruns, W. and Herzog, J., Cohen-Macaulay Rings, revised edition, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1998.CrossRefGoogle Scholar
Iversen, B., Generic local structure of the morphisms in commutative algebra, Lecture Notes in Mathematics, 310, Springer-Verlag, Berlin and New York, 1973.CrossRefGoogle Scholar
Kamoi, Y. and Kurano, K., On maps of Grothendieck groups induced by completion . J. Algebra 254(2002), 2143.CrossRefGoogle Scholar
Keller, B., Murfet, D., and Van den Bergh, M., On two examples by Iyama and Yoshino . Compos. Math. 147(2011), 591612.CrossRefGoogle Scholar
Knörrer, H., Cohen-Macaulay modules on hypersurface singularities. I . Invent. Math. 88(1987), no. 1, 153164.CrossRefGoogle Scholar
Kunz, E., Introduction to commutative algebra and algebraic geometry, Birkhäuser Boston, Inc., Boston, MA, 1985.Google Scholar
Leuschke, G. J. and Wiegand, R., Cohen–Macaulay representations, Mathematical Surveys and Monographs, 181, American Mathematical Society, Providence, RI, 2012.Google Scholar
Matsumura, H., Commutative ring theory, Cambridge University Press, Cambridge, 1986.Google Scholar
Thomason, R. W., The classification of triangulated subcategories . Compositio Math. 105(1997), 127.CrossRefGoogle Scholar
Watanabe, K., Certain invariant subrings are Gorenstein I . Osaka Math. J. 11(1974), 18.Google Scholar
Yoshino, Y., Cohen–Macaulay modules over Cohen–Macaulay rings, London Mathematical Society Lecture Note Series, 146, Cambridge University Press, Cambridge, 1990.CrossRefGoogle Scholar