No CrossRef data available.
Article contents
On intersections of polynomial semigroups orbits with plane lines
Published online by Cambridge University Press: 17 July 2020
Abstract
We study intersections of orbits in polynomial semigroup dynamics with lines on the affine plane over a number field, extending previous work of D. Ghioca, T. Tucker, and M. Zieve (2008).
MSC classification
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2020
Footnotes
The author’s work was supported by the ARC Discovery Grant DP180100201 and UNSW.
References
Bell, J. P., Ghioca, D., and Tucker, T. J.,
The dynamical Mordell-Lang problem for Noetherian spaces
. Funct. Approx. Comment. Math. 53(2015), no. 2, 313–328. http://dx.doi.org/10.7169/facm/2015.53.2.7
CrossRefGoogle Scholar
Bell, J. P., Ghioca, D., and Tucker, T. J.,
The dynamical Mordell-Lang conjecture
. Mathematical surveys and monographs, 210, Amer. Math. Soc., Providence, RI, 2016.Google Scholar
Benedetto, R., Ghioca, D., Kurlberg, P., and Tucker, T.,
A gap principle for dynamics
. Compos. Math. 146(2010), no. 4, 1056–1072. http://dx.doi.org/10.1112/S0010437X09004667
CrossRefGoogle Scholar
Benedetto, R., Ghioca, D., Kurlberg, P., and Tucker, T.,
A case of the dynamical Mordell-Lang conjecture
. Math. Ann. 352(2012), 1–26. http://dx.doi.org/10.1007/s00208-010-0621-4
CrossRefGoogle Scholar
Bilu, Y. and Tichy, R.,
The diophantine equation
$f(x)=g(y)$
. Acta Arith. 95(2000), 261–288. http://dx.doi.org/10.4064/aa-95-3-261-288
CrossRefGoogle Scholar
D’Andrea, C., Ostafe, A., Shparlinski, I. E., and Sombra, M.,
Reductions modulo primes of systems of polynomial equations and algebraic dynamical systems
. Trans. Am. Math. Soc. 371(2019), 1169–1198. http://dx.doi.org/10.1090/tran/7437
CrossRefGoogle Scholar
Ghioca, D. and Nguyen, K. D.,
The orbit intersection problem for linear spaces and semiabelian varieties
. Math. Res. Lett. 24(2017), no. 5, 1263–1283. http://dx.doi.org/10.4310/MRL.2017.v24.n5.a2
CrossRefGoogle Scholar
Ghioca, D., Tucker, T., and Zieve, M.,
Intersections of polynomial orbits, and a dynamical Mordell–Lang conjecture
. Invent. Math. 171(2008), 463–483. http://dx.doi.org/10.1007/s00222-007-0087-5
CrossRefGoogle Scholar
Ghioca, D., Tucker, T., and Zieve, M.,
The Mordell-Lang question for endomorphisms of semiabelian varieties
. J. Théor. Nombres Bordeaux 23(2011), no. 3, 645–666. http://dx.doi.org/10.5802/jtnb.781
CrossRefGoogle Scholar
Ghioca, D., Tucker, T., and Zieve, M.,
Linear relations between polynomial orbits
. Duke Math. J. 161(2012), 1379–1410. http://dx.doi.org/10.1215/00127094-1598098
CrossRefGoogle Scholar
Kawaguchi, S.,
Canonical heights, invariant currents, and dynamical systems of morphisms associated with line bundles
. J. Reine Angew. Math. 597(2006), 135–173. http://dx.doi.org/10.1515/CRELLE.2006.065
Google Scholar
Kawaguchi, S.,
Canonical heights for random iterations in certain varieties
. Int. Math. Res. Not. (2007), rnm 023. http://dx.doi.org/10.1093/imrn/rnm023
Google Scholar
Ostafe, A. and Sha, M.,
On the quantitative dynamical Mordell–Lang conjecture
. J. Number Theory 156(2015), 161–182. http://dx.doi.org/10.1016/j.jnt.2015.04.011
CrossRefGoogle Scholar
Ostafe, A. and Shparlinski, I. E.,
Orbits of algebraic dynamical systems in subgroups and subfields
. In: Number theory—Diophantine problems, uniform distribution and applications, Springer, Cham, 2017, pp. 347–368.CrossRefGoogle Scholar
Wang, M. X.,
A dynamical Mordell-Lang property on the disk
. Trans. Am. Math. Soc. 369(2017), no. 3, 2183–2204. http://dx.doi.org/10.1090/tran/6775
CrossRefGoogle Scholar