Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T21:52:26.069Z Has data issue: false hasContentIssue false

Trudinger’s inequalities for Riesz potentials in Morrey spaces of double phase functionals on half spaces

Published online by Cambridge University Press:  27 December 2021

Yoshihiro Mizuta
Affiliation:
Department of Mathematics, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8521, Japan e-mail: yomizuta@hiroshima-u.ac.jp
Tetsu Shimomura*
Affiliation:
Department of Mathematics, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima 739-8524, Japan

Abstract

Our aim in this paper is to establish Trudinger’s exponential integrability for Riesz potentials in weighted Morrey spaces on the half space. As an application, we obtain Trudinger’s inequality for Riesz potentials in the framework of double phase functionals.

Type
Article
Copyright
© Canadian Mathematical Society, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. R. and Hedberg, L. I., Function spaces and potential theory, Springer-Verlag, Berlin, Heidelberg, 1996.CrossRefGoogle Scholar
Baroni, P., Colombo, M., and Mingione, G., Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equat. 57(2018), no. 2, Paper No. 62.CrossRefGoogle Scholar
Baroni, P., Colombo, M., and Mingione, G., Non-autonomous functionals, borderline cases and related function classes. St Petersburg Math. J. 27(2016), 347379.CrossRefGoogle Scholar
Byun, S. S. and Lee, H. S., Calderón-Zygmund estimates for elliptic double phase problems with variable exponents. J. Math. Anal. Appl. 501(2021), 124015.CrossRefGoogle Scholar
Chiarenza, F. and Frasca, M., Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. 7(1987), 273279.Google Scholar
Colombo, M. and Mingione, G., Regularity for double phase variational problems. Arch. Rat. Mech. Anal. 215(2015), 443496.CrossRefGoogle Scholar
Colombo, M. and Mingione, G., Bounded minimizers of double phase variational integrals. Arch. Rat. Mech. Anal. 218(2015), 219273.CrossRefGoogle Scholar
Edmunds, D. E., Gurka, P., and Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115(1995), 151181.Google Scholar
Edmunds, D. E., Gurka, P., and Opic, B., Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. Royal Soc. Edinburgh. 126(1996), 9951009.CrossRefGoogle Scholar
Edmunds, D. E. and Hurri-Syrjänen, R., Sobolev inequalities of exponential type. Israel. J. Math. 123(2001), 6192.CrossRefGoogle Scholar
Edmunds, D. E. and Krbec, M., Two limiting cases of Sobolev imbeddings. Houston J. Math. 21(1995), 119128.Google Scholar
Di Fazio, G. and Ragusa, M. A., Commutators and Morrey spaces, Boll. Un. Mat. Ital. 7(1991), no. 5-A, 323332.Google Scholar
De Filippis, C. and Mingione, G., On the regularity of minima of non-autonomous functionals. J. Geom. Anal. 30(2020), no. 2, 15841626.CrossRefGoogle Scholar
De Filippis, C. and Oh, J., Regularity for multi-phase variational problems. J. Differ. Equat. 267(2019), no. 3, 16311670.CrossRefGoogle Scholar
Hästö, P. and Ok, J., Calderón-Zygmund estimates in generalized Orlicz spaces. J. Differ. Equat. 267(2019), no. 5, 27922823.CrossRefGoogle Scholar
Maeda, F. -Y., Mizuta, Y., Ohno, T., and Shimomura, T., Sobolev’s inequality inequality for double phase functionals with variable exponents. Forum Math. 31(2019), 517527.CrossRefGoogle Scholar
Mizuta, Y., Nakai, E., Ohno, T., and Shimomura, T., An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces ${L}^{1,\nu, \beta }(G)$ . Hiroshima Math. J. 38(2008), 425436.CrossRefGoogle Scholar
Mizuta, Y., Nakai, E., Ohno, T., and Shimomura, T., Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62(2010), 707744.CrossRefGoogle Scholar
Mizuta, Y., Nakai, E., Ohno, T., and Shimomura, T., Campanato-Morrey spaces for the double phase functionals with variable exponents. Nonlinear Anal. 197(2020), 111827.CrossRefGoogle Scholar
Mizuta, Y., Ohno, T., and Shimomura, T., Sobolev’s inequalities for Herz-Morrey-Orlicz spaces on the half space. Math. Ineq. Appl. 21(2018), 433453.Google Scholar
Mizuta, Y., Ohno, T., and Shimomura, T., Boundedness of fractional maximal operators for double phase functionals with variable exponents. J. Math. Anal. Appl. 501(2021), 124360.Google Scholar
Mizuta, Y. and Shimomura, T., Hardy-Sobolev inequalities in the unit ball for double phase functionals. J. Math. Anal. Appl. 501(2021), 124133.CrossRefGoogle Scholar
Mizuta, Y. and Shimomura, T., Sobolev type inequalities for fractional maximal functions and Green potentials in half spaces. Positivity 25(2021), 11311146.CrossRefGoogle Scholar
Mizuta, Y. and Shimomura, T., Sobolev type inequalities for fractional maximal functions and Riesz potentials in half spaces. Studia Math., to appear.Google Scholar
Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43(1938), 126166.CrossRefGoogle Scholar
Peetre, J., On the theory of ${\mathbf{\mathcal{L}}}_{p,\lambda }$ spaces. J. Funct. Anal. 4(1969), 7187.CrossRefGoogle Scholar
Ragusa, M. A. and Tachikawa, A., Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(2020), no. 1, 710728.CrossRefGoogle Scholar
Serrin, J., A remark on Morrey potential. Contemp. Math. 426(2007), 307315.CrossRefGoogle Scholar